如果二分图的每条边都有一个权(可以是负数),要求一种完备匹配方案,使得所有匹配边的权和最大,记做最佳完美匹配。(特殊的,当所有边的权为1时,就是最大完备匹配问题) 我们使用KM算法解决该问题。
二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 和 ,使得每一条边都分别连接 中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。
最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。
增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。
我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。
匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。
// 由于时间紧凑,代码摘自http://dsqiu.iteye.com/blog/1689505
#define maxn 10//表示x集合和y集合中顶点的最大个数!
int nx,ny;//x集合和y集合中顶点的个数
int edge[maxn][maxn];//edge[i][j]为1表示ij可以匹配
int cx[maxn],cy[maxn];//用来记录x集合中匹配的y元素是哪个!
int visited[maxn];//用来记录该顶点是否被访问过!
int path(int u)
{
int v;
for(v=0;v<ny;v++)
{
if(edge[u][v]&&!visited[v])
{
visited[v]=1;
if(cy[v]==-1||path(cy[v]))//如果y集合中的v元素没有匹配或者是v已经匹配,但是从cy[v]中能够找到一条增广路
{
cx[u]=v; //找到增广路,修改匹配M
cy[v]=u;
return 1;
}
}
}
return 0;
}
int maxmatch()
{
int res=0;
memset(cx,0xff,sizeof(cx));//初始值为-1表示两个集合中都没有匹配的元素!
memset(cy,0xff,sizeof(cy));
for(int i=0;i<=nx;i++)
{
if(cx[i]==-1) //还没被匹配,执行内部代码
{
memset(visited,0,sizeof(visitited)); //重置标记为为访问
res+=path(i); //以 i 为起点开始查找增广路,返回true ,匹配数+1
}
}
return res;
}
基本的网络流模型,最基础的最大流求法,即bfs找增广路法,也就是EK法,全名是Edmond-Karp,其实我倒是觉得记一下算法的全名和来历可以不时的拿出来装一装。
$ git clone git@git.xxxx.git Cloning into ‘intelligent-ranking’… fatal: cannot run ssh: No such file or directory fatal: unable to fork 查看用户主目录,确实没有对应的 .ssh 目录。 解决方案1:openssh 进行安装 解决方案2:没有装ssh命令,所以git地址得用http方式不能用git开头的。 $ git clone https://git.xxxxx git中ssh与https究竟有何不同 1.clone项目:使用ssh方式时,首先你必须是该项目的管理者或拥有者,并且需要配置个人的ssh key。而对于使用https方式来讲,就没有这些要求。 2.push:在使用ssh方式时,是不需要验证用户名和密码,如果你在配置ssh key时设置了密码,则需要验证密码。而对于使用https方式来讲,每次push都需要验证用户名和密码。