KEYS 的速度非常快,但在一个大的数据库中使用它仍然可能造成性能问题,如果你需要从一个数据集中查找特定的 key ,你最好还是用 Redis 的集合结构(set)来代替。 Keys模糊匹配,请大家在实际运用的时候忽略掉。因为Keys会引发Redis锁,并且增加Redis的CPU占用,情况是很恶劣的 由于执行keys命令,redis会锁定,如果数据庞大的话可能需要几秒或更长,对于生产服务器上锁定几秒这绝对是灾难了 如果有这种需求的话可以自己对键值做索引,比如把各种键值存到不同的set里面,分类建立索引,这样就可以很快的得到数据,但是这样也存在一个明显的缺点,就是浪费宝贵的空间,要知道这可是内存空间啊,所以还是要合理考虑,当然也可以想办法,比如对于有规律的键值,可以存储他们的始末值等等。 2.8版本之后SCAN命令已经可用,允许使用游标从keyspace中检索键。对比KEYS命令,虽然SCAN无法一次性返回所有匹配结果,但是却规避了阻塞系统这个高风险,从而也让一些操作可以放在主节点上执行。 SCAN 命令是一个基于游标的迭代器。SCAN 命令每次被调用之后, 都会向用户返回一个新的游标,用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。同时,使用SCAN,用户还可以使用keyname模式和count选项对命令进行调整。SCAN相关命令还包括SSCAN 命令、HSCAN 命令和 ZSCAN 命令,分别用于集合、哈希键及有续集等。 另一方面,使用redis的时候一定要注意控制key,对于key的命令要制定一个完善的方案,这样才能对redis里面的数据可控,避免出现没用数据长时间占据数据库这种情况,也可以避免上面说的这种查询键值的操作。
在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式
LRU全称是Least Recently Used,即最近最久未使用的意思。 LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。 1.1.2. 实现 LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序。 具体实现如下:
Redis本身仅支持单实例,内存一般最多10~20GB。这无法支撑大型线上业务系统的需求。而且也造成资源的利用率过低——毕竟现在服务器内存动辄100~200GB。 1.1 客户端分片 这种方案将分片工作放在业务程序端,程序代码根据预先设置的路由规则,直接对多个Redis实例进行分布式访问。这样的好处是,不依赖于第三方分布式中间件,实现方法和代码都自己掌控,可随时调整,不用担心踩到坑。 这实际上是一种静态分片技术。Redis实例的增减,都得手工调整分片程序。基于此分片机制的开源产品,现在仍不多见。 这种分片机制的性能比代理式更好(少了一个中间分发环节)。但缺点是升级麻烦,对研发人员的个人依赖性强——需要有较强的程序开发能力做后盾。如果主力程序员离职,可能新的负责人,会选择重写一遍。 所以,这种方式下,可运维性较差。出现故障,定位和解决都得研发和运维配合着解决,故障时间变长。 这种方案,难以进行标准化运维,不太适合中小公司(除非有足够的DevOPS)。 1.2 代理分片 这种方案,将分片工作交给专门的代理程序来做。代理程序接收到来自业务程序的数据请求,根据路由规则,将这些请求分发给正确的Redis实例并返回给业务程序。 这种机制下,一般会选用第三方代理程序(而不是自己研发),因为后端有多个Redis实例,所以这类程序又称为分布式中间件。 这样的好处是,业务程序不用关心后端Redis实例,运维起来也方便。虽然会因此带来些性能损耗,但对于Redis这种内存读写型应用,相对而言是能容忍的。 这是我们推荐的集群实现方案。像基于该机制的开源产品Twemproxy,便是其中代表之一,应用非常广泛。 1.3 Redis Cluster 在这种机制下,没有中心节点(和代理模式的重要不同之处)。所以,一切开心和不开心的事情,都将基于此而展开。 Redis Cluster将所有Key映射到16384个Slot中,集群中每个Redis实例负责一部分,业务程序通过集成的Redis Cluster客户端进行操作。客户端可以向任一实例发出请求,如果所需数据不在该实例中,则该实例引导客户端自动去对应实例读写数据。 Redis Cluster的成员管理(节点名称、IP、端口、状态、角色)等,都通过节点之间两两通讯,定期交换并更新。 由此可见,这是一种非常“重”的方案。已经不是Redis单实例的“简单、可依赖”了。可能这也是延期多年之后,才近期发布的原因之一。 这令人想起一段历史。因为Memcache不支持持久化,所以有人写了一个Membase,后来改名叫Couchbase,说是支持Auto Rebalance,好几年了,至今都没多少家公司在使用。 这是个令人忧心忡忡的方案。为解决仲裁等集群管理的问题,Oracle RAC还会使用存储设备的一块空间。而Redis Cluster,是一种完全的去中心化…… 本方案目前不推荐使用,从了解的情况来看,线上业务的实际应用也并不多见。