redis keys scan

Posted by 夏泽民

KEYS 的速度非常快,但在一个大的数据库中使用它仍然可能造成性能问题,如果你需要从一个数据集中查找特定的 key ,你最好还是用 Redis 的集合结构(set)来代替。 Keys模糊匹配,请大家在实际运用的时候忽略掉。因为Keys会引发Redis锁,并且增加Redis的CPU占用,情况是很恶劣的 由于执行keys命令,redis会锁定,如果数据庞大的话可能需要几秒或更长,对于生产服务器上锁定几秒这绝对是灾难了 如果有这种需求的话可以自己对键值做索引,比如把各种键值存到不同的set里面,分类建立索引,这样就可以很快的得到数据,但是这样也存在一个明显的缺点,就是浪费宝贵的空间,要知道这可是内存空间啊,所以还是要合理考虑,当然也可以想办法,比如对于有规律的键值,可以存储他们的始末值等等。 2.8版本之后SCAN命令已经可用,允许使用游标从keyspace中检索键。对比KEYS命令,虽然SCAN无法一次性返回所有匹配结果,但是却规避了阻塞系统这个高风险,从而也让一些操作可以放在主节点上执行。 SCAN 命令是一个基于游标的迭代器。SCAN 命令每次被调用之后, 都会向用户返回一个新的游标,用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。同时,使用SCAN,用户还可以使用keyname模式和count选项对命令进行调整。SCAN相关命令还包括SSCAN 命令、HSCAN 命令和 ZSCAN 命令,分别用于集合、哈希键及有续集等。 另一方面,使用redis的时候一定要注意控制key,对于key的命令要制定一个完善的方案,这样才能对redis里面的数据可控,避免出现没用数据长时间占据数据库这种情况,也可以避免上面说的这种查询键值的操作。



lru

Posted by 夏泽民

在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式

LRU全称是Least Recently Used,即最近最久未使用的意思。 LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。



lfu

Posted by 夏泽民

LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。 1.1.2. 实现 LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序。 具体实现如下:

  1. 新加入数据插入到队列尾部(因为引用计数为1);
  2. 队列中的数据被访问后,引用计数增加,队列重新排序;
  3. 当需要淘汰数据时,将已经排序的列表最后的数据块删除。 l 命中率


Codis Twemproxy redis集群

Posted by 夏泽民

Redis本身仅支持单实例,内存一般最多10~20GB。这无法支撑大型线上业务系统的需求。而且也造成资源的利用率过低——毕竟现在服务器内存动辄100~200GB。 1.1 客户端分片 这种方案将分片工作放在业务程序端,程序代码根据预先设置的路由规则,直接对多个Redis实例进行分布式访问。这样的好处是,不依赖于第三方分布式中间件,实现方法和代码都自己掌控,可随时调整,不用担心踩到坑。 这实际上是一种静态分片技术。Redis实例的增减,都得手工调整分片程序。基于此分片机制的开源产品,现在仍不多见。 这种分片机制的性能比代理式更好(少了一个中间分发环节)。但缺点是升级麻烦,对研发人员的个人依赖性强——需要有较强的程序开发能力做后盾。如果主力程序员离职,可能新的负责人,会选择重写一遍。 所以,这种方式下,可运维性较差。出现故障,定位和解决都得研发和运维配合着解决,故障时间变长。 这种方案,难以进行标准化运维,不太适合中小公司(除非有足够的DevOPS)。 1.2 代理分片 这种方案,将分片工作交给专门的代理程序来做。代理程序接收到来自业务程序的数据请求,根据路由规则,将这些请求分发给正确的Redis实例并返回给业务程序。 这种机制下,一般会选用第三方代理程序(而不是自己研发),因为后端有多个Redis实例,所以这类程序又称为分布式中间件。 这样的好处是,业务程序不用关心后端Redis实例,运维起来也方便。虽然会因此带来些性能损耗,但对于Redis这种内存读写型应用,相对而言是能容忍的。 这是我们推荐的集群实现方案。像基于该机制的开源产品Twemproxy,便是其中代表之一,应用非常广泛。 1.3 Redis Cluster 在这种机制下,没有中心节点(和代理模式的重要不同之处)。所以,一切开心和不开心的事情,都将基于此而展开。 Redis Cluster将所有Key映射到16384个Slot中,集群中每个Redis实例负责一部分,业务程序通过集成的Redis Cluster客户端进行操作。客户端可以向任一实例发出请求,如果所需数据不在该实例中,则该实例引导客户端自动去对应实例读写数据。 Redis Cluster的成员管理(节点名称、IP、端口、状态、角色)等,都通过节点之间两两通讯,定期交换并更新。 由此可见,这是一种非常“重”的方案。已经不是Redis单实例的“简单、可依赖”了。可能这也是延期多年之后,才近期发布的原因之一。 这令人想起一段历史。因为Memcache不支持持久化,所以有人写了一个Membase,后来改名叫Couchbase,说是支持Auto Rebalance,好几年了,至今都没多少家公司在使用。 这是个令人忧心忡忡的方案。为解决仲裁等集群管理的问题,Oracle RAC还会使用存储设备的一块空间。而Redis Cluster,是一种完全的去中心化…… 本方案目前不推荐使用,从了解的情况来看,线上业务的实际应用也并不多见。

  1. Twemproxy及不足之处 Twemproxy是一种代理分片机制,由Twitter开源。Twemproxy作为代理,可接受来自多个程序的访问,按照路由规则,转发给后台的各个Redis服务器,再原路返回。 这个方案顺理成章地解决了单个Redis实例承载能力的问题。当然,Twemproxy本身也是单点,需要用Keepalived做高可用方案。 我想很多人都应该感谢Twemproxy,这么些年来,应用范围最广、稳定性最高、最久经考验的分布式中间件,应该就是它了。只是,他还有诸多不方便之处。 Twemproxy最大的痛点在于,无法平滑地扩容/缩容。 这样导致运维同学非常痛苦:业务量突增,需增加Redis服务器;业务量萎缩,需要减少Redis服务器。但对Twemproxy而言,基本上都很难操作(那是一种锥心的、纠结的痛……)。 或者说,Twemproxy更加像服务器端静态sharding。有时为了规避业务量突增导致的扩容需求,甚至被迫新开一个基于Twemproxy的Redis集群。 Twemproxy另一个痛点是,运维不友好,甚至没有控制面板。 Codis刚好击中Twemproxy的这两大痛点,并且提供诸多其他令人激赏的特性。


gap Lock 间隙锁

Posted by 夏泽民

InnoDB有三种行锁的算法:



Search

Popular posts

Anything in here will be replaced on browsers that support the canvas element

Recent posts

This blog is maintained by 夏泽民

Get in touch with me at 465474307@qq.com

Subscribe to our mailing list

* indicates required