Pessimistic Lock

 悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。



        乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。



        两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

本质上,数据库的乐观锁做法和悲观锁做法主要就是解决下面假设的场景,避免丢失更新问题:
        一个比较清楚的场景
        下面这个假设的实际场景可以比较清楚的帮助我们理解这个问题:
假设当当网上用户下单买了本书,这时数据库中有条订单号为001的订单,其中有个status字段是’有效’,表示该订单是有效的;
后台管理人员查询到这条001的订单,并且看到状态是有效的
用户发现下单的时候下错了,于是撤销订单,假设运行这样一条SQL: update order_table set status = ‘取消’ where order_id = 001;
后台管理人员由于在b这步看到状态有效的,这时,虽然用户在c这步已经撤销了订单,可是管理人员并未刷新界面,看到的订单状态还是有效的,于是点击”发货”按钮,将该订单发到物流部门,同时运行类似如下SQL,将订单状态改成已发货:update order_table set status = ‘已发货’ where order_id = 001



观点1:只有冲突非常严重的系统才需要悲观锁;“所有悲观锁的做法都适合于状态被修改的概率比较高的情况,具体是否合适则需要根据实际情况判断。”,表达的也是这个意思,不过说法不够准确;的确,之所以用悲观锁就是因为两个用户更新同一条数据的概率高,也就是冲突比较严重的情况下,所以才用悲观锁。



观点2:最后提交前作一次select for update检查,然后再提交update也是一种乐观锁的做法,的确,这符合传统乐观锁的做法,就是到最后再去检查。但是wiki在解释悲观锁的做法的时候,’It is not appropriate for use in web application development.’, 现在已经很少有悲观锁的做法了,所以我自己将这种二次检查的做法也归为悲观锁的变种,因为这在所有乐观锁里面,做法和悲观锁是最接近的,都是先select for update,然后update



在实际应用中我们在更新数据的时候,更严谨的做法是带上更新前的“状态”,如



update order_table set status = ‘取消’ where order_id = 001 and status = ‘待支付’ and ……….; 



update order_table set status = ‘已发货’ where order_id = 001 and status = ‘已支付’ and ……….;



然后在业务逻辑代码里判断更新的记录数,为0说明数据库已经被更新了,否则是正常的。



为什么需要锁(并发控制)?
  在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突。这就是著名的并发性问题。



典型的冲突有:



丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失。例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新。
脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取。例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6。
为了解决这些并发带来的问题。 我们需要引入并发控制机制。



并发控制机制
  悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。[1]



  乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。[1] 乐观锁不能解决脏读的问题。



乐观锁应用



乐观锁介绍:



  乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。那么我们如何实现乐观锁呢,一般来说有以下2种方式:



  1.使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式。何谓数据版本?即为数据增加一个版本标识,一般是通过为数据库表增加一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据
  
  2.乐观锁定的第二种实现方式和第一种差不多,同样是在需要乐观锁控制的table中增加一个字段,名称无所谓,字段类型使用时间戳(timestamp), 和上面的version类似,也是在更新提交的时候检查当前数据库中数据的时间戳和自己更新前取到的时间戳进行对比,如果一致则OK,否则就是版本冲突。
  
  实际生产环境里边,如果并发量不大,完全可以使用悲观锁定的方法,这种方法使用起来非常方便和简单。
但是如果系统的并发非常大的话,悲观锁定会带来非常大的性能问题,所以就要选择乐观锁定的方法。



悲观锁假定其他用户企图访问或者改变你正在访问、更改的对象的概率是很高的,因此在悲观锁的环境中,在你开始改变此对象之前就将该对象锁住,并且直到你提交了所作的更改之后才释放锁。悲观的缺陷是不论是页锁还是行锁,加锁的时间可能会很长,这样可能会长时间的限制其他用户的访问,也就是说悲观锁的并发访问性不好。



乐观锁则认为其他用户企图改变你正在更改的对象的概率是很小的,因此乐观锁直到你准备提交所作的更改时才将对象锁住,当你读取以及改变该对象时并不加锁。可见乐观锁加锁的时间要比悲观锁短,乐观锁可以用较大的锁粒度获得较好的并发访问性能。但是如果第二个用户恰好在第一个用户提交更改之前读取了该对象,那么当他完成了自己的更改进行提交时,数据库就会发现该对象已经变化了,这样,第二个用户不得不重新读取该对象并作出更改。这说明在乐观锁环境中,会增加并发用户读取对象的次数。



以版本控制系统为例,来说说两种最基本的并发性问题。



【丢失更新】

小张想修改源代码里面的a方法,正在她修改的同时,小李打开了这个文件,修改了b方法并且保存了文件,等小张修改完成后,保存文件,小李所做的修改就被覆盖了。



【不一致的读】

小张想要知道包里面一共有多少个类,包分了a,b两个子包。小张打开a包,看到了7个类。突然小张接到老婆打来的电话,在小张接电话的时候,小李往a包中加了2个类,b包中加了3个类(原先b包中是5个类)。



小张接完电话后再打开b包,看到了8个类,很自然得出结论:包中一共有15个类。



很遗憾,15个永远不是正确的答案。在小李修改前,正确答案是12(7+5),修改后是17(9+8)。这两个答案都是正确的,虽然有一个不是当前的。但15不对,因为小张读取的数据是不一致的。



小结:不一致读指你要读取两种数据,这两种数据都是正确的,但是在同一时刻两者并非都正确。



【隔离 和 不可变】

在企业应用中,解决并发冲突的两种常用手段是隔离和不可变。



只有当多个活动(进程或者线程)同时访问同一数据时才会引发并发问题。一种很自然的思路就是同一时刻只允许一个活动访问数据。如果小张打开了文件,就不允许其他人打开,或者其他人只能通过只读的方式打开副本,就可以解决这个问题。



隔离能够有效减少发生错误的可能。我们经常见到程序员陷入到并发问题的泥潭里,每一段代码写完都要考虑并发问题,这样太累了。我们可以利用隔离技术创建出隔离区域,当程序进入隔离区域时不用关心并发问题。好的并发性设计就是创造这样的一些隔离区域,并保证代码尽可能的运行在其中。



另一种思路:只有当你需要修改共享的数据时才可能引发并发性问题,所以我们可以将要共享的数据制作为“不可变”的,以避免并发性问题。当然我们不可能将所有的数据都做成不可变的,但如果一些数据是不可变的,对它们进行并发操作时我们就可以放松自己的神经了。



【乐观并发控制、悲观并发控制】

如果数据是可变的,并且无法隔离呢?这种情况下最常用的两种控制就是乐观并发控制和悲观并发控制。



假设小张和小李想要同时修改同一个文件。如果使用乐观锁,俩人都能打开文件进行修改,如果小张先提交了内容,没有问题,他所做的改变会保存到服务器上。但小李提交时就会遇到麻烦,版本控制服务器会检测出两种修改的冲突,小李的提交会被具体,并由小李决定该如何处理这种情况(对于绝大部分版本控制软件来说,会读取并标识出小张做的改变,然后由小李决定是否合并)。



如果使用的是悲观锁,小张先检出(check out)文件,那么小李就无法再次检出同一文件,直到小张提交了他的改变。



建议你将乐观锁想成一种检测冲突的手段,而悲观锁是一种避免冲突的手段(严格来说,乐观锁其实不能称之为“锁”,但是这个名字已经流传开了,那就继续使用吧)。一些老的版本控制系统,比如VSS 6.0使用的是悲观锁的机制。而现代的版本控制系统一般两种都支持,默认使用乐观锁。



两种锁各有优缺点。。。这段懒的翻译了,很明显看出,乐观锁可以提高并发访问的效率,但是如果出现了冲突只能向上抛出,然后重来一遍;悲观锁可以避免冲突的发生,但是会降低效率。



选择使用那一种锁取决于访问频率和一旦产生冲突的严重性。如果系统被并发访问的概率很低,或者冲突发生后的后果不太严重(所谓后果应该指被检测到冲突的提交会失败,必须重来一次),可以使用乐观锁,否则使用悲观锁。



【我再补充两句】

我们经常会在访问数据库的时候用到锁,怎么实现乐观锁和悲观锁呢?以Hibernate为例,可以通过为记录添加版本或时间戳字段来实现乐观锁。可以用session.Lock()锁定对象来实现悲观锁(本质上就是执行了SELECT * FROM t FOR UPDATE语句)。



另一个高并发控制解决方案乐观并发控制和悲观并发控制总结概述:



我们可以使用两种形式的并发控制策略:乐观并发控制和悲观并发控制。



     假设martin和David同时都要编辑Customer文件。如果使用乐观锁策略,他们两个人都能得到一份文件的Copy,并且


可以自由编辑文件。假设David第一个完成了工作,那么他可以毫无困难地更新他的修改。但是,当Martin想要提交他的修改时,并发控制策略就会开始起作用。源代码控制系统会检测到在Martin的修改与David的修改之间存在着冲突,因而拒绝Martin的提交,并由Martin负责指出怎样处理这种情况。如果使用悲观锁策略,只要有人先取出文件,其他人就不能对该文件进行编辑。因此,假如是Martin先取了文件,那么David就只能在Martin完成任务并提交之后才能对该文件进行操作。



     如果把乐观锁看作是关于冲突检测的,那么悲观锁就是关于冲突避免的。在实际应用的源代码控制系统中,


这两种策略都可以被使用,但是现在大多数源代码开发者更倾向于使用乐观锁策略。(有一种很有道理的说法:乐观锁并不是真正的锁定,但是这种叫法很方便并且广泛流传,以至于不容忽略。)



     这两种策略各有优缺点。悲观锁的问题是减少了并发的程序。当Martin正对一个被他加锁的文件进行编辑的时候,


其它人只能等着。使用过悲观的源代码控制人都知道这是一种多么令人丧气的事情。对于企业数据,情况经常会变得更加糟糕,只要有人在编辑,其他人就无法进行读取,更加说进行编辑了。



     乐观锁策略则允许人们更自由一些,因为只有在提交的时候才有可能遇到阻碍。该策略的问题在于当冲突的时候会发生什么样的事情呢?事实上,David之后的所有人在提交的时候都必须读取David修改过的那个版本,并指出怎样合并自己和David的修改,然后再提交一个重新修改过的最新版本。有了源代码控制系统,这样做并不会有什么麻烦。在许多场合下,源代码控制系统确实能够自动进行合并操作,甚至在无法自动合并的时候,也能让使用都很容易看出不同文件版本之间的差别。但是,业务数据通常都是很难被自动合并的,所以经常只能扔掉原来的东西,然后从头开始。


在乐观锁和悲观锁之间进行选择的标准是:冲突的频率与严重性。如果冲突很少,或者冲突的后果不会很严重,那么通常情况下应该选择乐观锁,因为它能得到更好的并发性,而且更容易实现。但是,如果冲突的结果对于用户来说痛苦的,那么就需要使用悲观策略。



乐观锁的局限是:只能在提交数据时才发现业务事务将要失败,而且在某些情况下,发现失败太迟的代价会很大。用户可能花了一个小时的时间输入一份租约的详细信息,错误太多会让用户对系统失去信心。另一个方法是使用悲观锁,它可以尽早地发现错误,但理难以编程实现,而且会降低系统的灵活性。


Category storage