hive 表与hdfs关系

Hive是一个SQL解析引擎,将SQL语句转译成MR Job,然后再Hadoop平台上运行,达到快速开发的目的。
• Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。本质就是Hadoop的目录/文件,达到了元数据与数据存储分离的目的
• Hive本身不存储数据,它完全依赖HDFS和MapReduce。
• Hive的内容是读多写少,不支持对数据的改写和删除
• Hive中没有定义专门的数据格式,由用户指定,需要指定三个属性:
    – 列分隔符
    – 行分隔符
    – 读取文件数据的方法
1.  查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。



2.  数据存储位置。Hive 是建立在Hadoop 之上的,所有 Hive 的数据都是存储在HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。



3.  数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。



4.  数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO …  VALUES 添加数据,使用 UPDATE… SET 修改数据。



5.  索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。



6.  执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的,而数据库通常有自己的执行引擎。



7.  执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。



8.  可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。



9.      数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。




• hive的表本质就是Hadoop的目录/文件
    – hive默认表存放路径一般都是在你工作目录的hive目录里面,按表名做文件夹分开,如果你有分区表的话,分区值是子文件夹,可以直接在其它的M/R job里直接应用这部分数据
1、Hive中所有的数据都存储在 HDFS 中,没有专门的数据存储格式(可支持Text,SequenceFile,ParquetFile,RCFILE等)
2、只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据。
3、Hive 中包含以下数据模型:DB、Table,External Table,Partition,Bucket。
      –  db:在hdfs中表现为${hive.metastore.warehouse.dir}目录下一个文件夹
     – table:在hdfs中表现所属db目录下一个文件夹
     –  external table:与table类似,不过其数据存放位置可以在任意指定路径
     – partition:在hdfs中表现为table目录下的子目录
     –  bucket:在hdfs中表现为同一个表目录下根据hash散列之后的多个文件
Hive的create创建表的时候,选择的创建方式:
    – create table
    – create external table
• 特点:
    – 在导入数据到外部表,数据并没有移动到自己的数据仓库目录下,也就是说外部表中的数据并不是由它自己来管理的!而表则不一样;
    – 在删除表的时候,Hive将会把属于表的元数据和数据全部删掉;而删除外部表的时候,Hive仅仅删除外部表的元数据,数据是不会删除的!
在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中
    – 例如:pvs 表中包含 ds 和 city 两个 Partition,则
    – 对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;
    – 对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA
• partition是辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。
hive中table可以拆分成partition,table和partition可以通过‘CLUSTERED BY’进一步分bucket,bucket中的数据可以通过‘SORT BY’排序。
• create table bucket_user (id int,name string)clustered by (id) into 4 buckets;
• ‘set hive.enforce.bucketing = true’ 可以自动控制上一轮reduce的数量从而适配bucket的个数,当然,用户也可以自主设置mapred.reduce.tasks去适配bucket个数
• Bucket主要作用:
    – 数据sampling
    – 提升某些查询操作效率,例如mapside join
• 查看sampling数据:
    – hive> select * from student tablesample(bucket 1 out of 2 on id);
    – tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
    – y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了64份,当y=32时,抽取(64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例如,table总bucket数为32,tablesample(bucket 3 out of 16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据。



2.4.4 Hive数据类型



  • 数据类型
        • TINYINT
        • SMALLINT
        • INT
        • BIGINT
        • BOOLEAN
        • FLOAT
        • DOUBLE
        • STRING
        • BINARY(Hive 0.8.0以上才可用)
        • TIMESTAMP(Hive 0.8.0以上才可用)



– 复合类型
• Arrays:ARRAY
• Maps:MAP<primitive_type, data_type>
• Structs:STRUCT<col_name: data_type[COMMENT col_comment],……>



• Union:UNIONTYPE<data_type, data_type,……>


Category storage