文字特征提取算法




TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。











LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布
1.对每一篇文档,从主题分布中抽取一个主题;
2.从上述被抽到的主题所对应的单词分布中抽取一个单词;
3.重复上述过程直至遍历文档中的每一个单词。
先定义一些字母的含义:文档集合D,主题(topic)集合T
D中每个文档d看作一个单词序列<w1,w2,...,wn>,wi表示第i个单词,设d有n个单词。(LDA里面称之为wordbag,实际上每个单词的出现位置对LDA算法无影响)
·D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC),LDA以文档集合D作为输入,希望训练出的两个结果向量(设聚成k个topic,VOC中共包含m个词):
·对每个D中的文档d,对应到不同Topic的概率θd<pt1,...,ptk>,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。
·对每个T中的topict,生成不同单词的概率φt<pw1,...,pwm>,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topict的VOC中第i个单词的数目,N表示所有对应到topict的单词总数。
LDA的核心公式如下:
p(w|d)=p(w|t)*p(t|d)
直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。
实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt。



Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。Word2Vec模型中,主要有Skip-Gram和CBOW两种模型,从直观上理解,Skip-Gram是给定input word来预测上下文。而CBOW是给定上下文,来预测input word。




Skip-Gram模型的基础形式非常简单,为了更清楚地解释模型,我们先从最一般的基础模型来看Word2Vec(下文中所有的Word2Vec都是指Skip-Gram模型)。



Word2Vec模型实际上分为了两个部分,第一部分为建立模型,第二部分是通过模型获取嵌入词向量。Word2Vec的整个建模过程实际上与自编码器(auto-encoder)的思想很相似,即先基于训练数据构建一个神经网络,当这个模型训练好以后,我们并不会用这个训练好的模型处理新的任务,我们真正需要的是这个模型通过训练数据所学得的参数,例如隐层的权重矩阵——后面我们将会看到这些权重在Word2Vec中实际上就是我们试图去学习的“word vectors”。基于训练数据建模的过程,我们给它一个名字叫“Fake Task”,意味着建模并不是我们最终的目的。



上面提到的这种方法实际上会在无监督特征学习(unsupervised feature learning)中见到,最常见的就是自编码器(auto-encoder):通过在隐层将输入进行编码压缩,继而在输出层将数据解码恢复初始状态,训练完成后,我们会将输出层“砍掉”,仅保留隐层。
The Fake Task



我们在上面提到,训练模型的真正目的是获得模型基于训练数据学得的隐层权重。为了得到这些权重,我们首先要构建一个完整的神经网络作为我们的“Fake Task”,后面再返回来看通过“Fake Task”我们如何间接地得到这些词向量。



接下来我们来看看如何训练我们的神经网络。假如我们有一个句子“The dog barked at the mailman”。



首先我们选句子中间的一个词作为我们的输入词,例如我们选取“dog”作为input word;



有了input word以后,我们再定义一个叫做skip_window的参数,它代表着我们从当前input word的一侧(左边或右边)选取词的数量。如果我们设置skip_window=2,那么我们最终获得窗口中的词(包括input word在内)就是[‘The’, ‘dog’,’barked’, ‘at’]。skip_window=2代表着选取左input word左侧2个词和右侧2个词进入我们的窗口,所以整个窗口大小span=2x2=4。另一个参数叫num_skips,它代表着我们从整个窗口中选取多少个不同的词作为我们的output word,当skip_window=2,num_skips=2时,我们将会得到两组 (input word, output word) 形式的训练数据,即 (‘dog’, ‘barked’),(‘dog’, ‘the’)。



神经网络基于这些训练数据将会输出一个概率分布,这个概率代表着我们的词典中的每个词是output word的可能性。这句话有点绕,我们来看个栗子。第二步中我们在设置skip_window和num_skips=2的情况下获得了两组训练数据。假如我们先拿一组数据 (‘dog’, ‘barked’) 来训练神经网络,那么模型通过学习这个训练样本,会告诉我们词汇表中每个单词是“barked”的概率大小。



模型的输出概率代表着到我们词典中每个词有多大可能性跟input word同时出现。举个栗子,如果我们向神经网络模型中输入一个单词“Soviet“,那么最终模型的输出概率中,像“Union”, ”Russia“这种相关词的概率将远高于像”watermelon“,”kangaroo“非相关词的概率。因为”Union“,”Russia“在文本中更大可能在”Soviet“的窗口中出现。我们将通过给神经网络输入文本中成对的单词来训练它完成上面所说的概率计算。下面的图中给出了一些我们的训练样本的例子。我们选定句子“The quick brown fox jumps over lazy dog”,设定我们的窗口大小为2(window_size=2),也就是说我们仅选输入词前后各两个词和输入词进行组合。下图中,蓝色代表input word,方框内代表位于窗口内的单词。



一文详解 Word2vec 之 Skip-Gram 模型(结构篇)



我们的模型将会从每对单词出现的次数中习得统计结果。例如,我们的神经网络可能会得到更多类似(“Soviet“,”Union“)这样的训练样本对,而对于(”Soviet“,”Sasquatch“)这样的组合却看到的很少。因此,当我们的模型完成训练后,给定一个单词”Soviet“作为输入,输出的结果中”Union“或者”Russia“要比”Sasquatch“被赋予更高的概率。
</div>


Category spark