Socket 源码

Kernel提供了一组内核态的socket API,基本上在用户态的sockt API在内核中都有对应的API。 在net/socket.c中可以看到如下导出符号:



EXPORT_SYMBOL(kernel_sendmsg);

EXPORT_SYMBOL(kernel_recvmsg);

EXPORT_SYMBOL(sock_create_kern);

EXPORT_SYMBOL(sock_release);

EXPORT_SYMBOL(kernel_bind);

EXPORT_SYMBOL(kernel_listen);

EXPORT_SYMBOL(kernel_accept);

EXPORT_SYMBOL(kernel_connect);

EXPORT_SYMBOL(kernel_getsockname);

EXPORT_SYMBOL(kernel_getpeername);

EXPORT_SYMBOL(kernel_getsockopt);

EXPORT_SYMBOL(kernel_setsockopt);

EXPORT_SYMBOL(kernel_sendpage);

EXPORT_SYMBOL(kernel_sock_ioctl);

EXPORT_SYMBOL(kernel_sock_shutdown);

struct socket
{
socket_state state; // socket state



 short   type ; // socket type

unsigned long flags; // socket flags

struct fasync_struct *fasync_list;

wait_queue_head_t wait;

struct file *file;

struct sock *sock; // socket在网络层的表示;

const struct proto_ops *ops;


}



struct socket结构体的类型
enum sock_type
{
SOCK_STREAM = 1, // 用于与TCP层中的tcp协议数据的struct socket



SOCK_DGRAM = 2, //用于与TCP层中的udp协议数据的struct socket



SOCK_RAW = 3, // raw struct socket



SOCK_RDM = 4, //可靠传输消息的struct socket



SOCK_SEQPACKET = 5,// sequential packet socket



SOCK_DCCP = 6,



SOCK_PACKET = 10, //从dev level中获取数据包的socket
};



struct socket 中的flags字段取值:
#define SOCK_ASYNC_NOSPACE 0
#define SOCK_ASYNC_WAITDATA 1
#define SOCK_NOSPACE 2
#define SOCK_PASSCRED 3
#define SOCK_PASSSEC 4



源码剖析:



为方便大家理清思路,先介绍几个中间函数。建议:像这些大型软件项目,函数内通常还会调用一些公用的基础类的工具函数,我们在阅读源码时,应该先弄清楚这些函数,这样当阅读对应函数时,能很好地把握该函数的内部细节。



/下面两个函数实现地址用户空间和内核空间地址之间的相互移动/
//从uaddr拷贝ulen大小的数据到kaddr
static int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
{
int err;
if(ulen<0||ulen>MAX_SOCK_ADDR)
return -EINVAL;
if(ulen==0)
return 0;
//检查用户空间的指针所指的指定大小存储块是否可读
if((err=verify_area(VERIFY_READ,uaddr,ulen))<0)
return err;
memcpy_fromfs(kaddr,uaddr,ulen);//实质是memcpy函数
return 0;
}
//注意的是,从内核拷贝数据到用户空间是值-结果参数
//ulen这个指向某个整数变量的指针,当函数被调用的时候,它告诉内核需要拷贝多少
//函数返回时,该参数作为一个结果,告诉进程,内核实际拷贝了多少信息
static int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
{
int err;
int len;



//判断ulen指向的存储块是否可写,就是判断ulen是否可作为左值	
if((err=verify_area(VERIFY_WRITE,ulen,sizeof(*ulen)))<0)
return err;
len=get_fs_long(ulen);//len = *ulen,ulen作为值传入,告诉要拷贝多少数据
if(len>klen)
len=klen;//供不应求,按供的算。实际拷贝的数据
if(len<0 || len> MAX_SOCK_ADDR)
return -EINVAL;
if(len)
{
//判断uaddr用户空间所指的存储块是否可写
if((err=verify_area(VERIFY_WRITE,uaddr,len))<0)
return err;
memcpy_tofs(uaddr,kaddr,len);//实质是调用memcpy
}
put_fs_long(len,ulen);//*ulen = len,作为结果返回,即实际拷贝了多少数据
return 0; } 下面这个函数一看就知道什么意思 static inline unsigned long get_user_long(const int *addr) {
return *addr; }


#define get_fs_long(addr) get_user_long((int *)(addr))



为套接字分配文件描述符,套接字其实同普通的文件描述符差不多,分配文件描述符的同时需要一个file结构,file结构中f_inode字段指向inode(这里的形参)
/*



  • 为网络套接字分配一个文件描述符
    */



static int get_fd(struct inode *inode)
{
int fd;
struct file *file;



/*
* Find a file descriptor suitable for return to the user.
*/

file = get_empty_filp();//分配文件对象,文件描述符对应实体,file结构体指示一个打开的文件,filp:file pointer
if (!file)
return(-1);
//找到可用的文件描述符
for (fd = 0; fd < NR_OPEN; ++fd)
if (!current->files->fd[fd])
break;
//没有空闲可用的文件描述符,则退出
if (fd == NR_OPEN)
{
file->f_count = 0;
return(-1);
}
//在文件描述符集合中删除一个新的文件描述符
FD_CLR(fd, ¤t->files->close_on_exec);
current->files->fd[fd] = file;//赋值,挂钩
file->f_op = &socket_file_ops;//指定操作函数集,实现了网络操作的普通文件接口
file->f_mode = 3;//权限
file->f_flags = O_RDWR;//标志,可读可写
file->f_count = 1;//引用计数
file->f_inode = inode;//与文件inode建立联系,inode为对文件的索引
if (inode)
inode->i_count++;//inode的引用计数也要增1
file->f_pos = 0;//偏移值
return(fd); }


每个文件描述符都与对应的inode结构关联,通过文件描述符可以找到file结构,通过file结构可以找到inode,而socket结构又是作为inode结构中的一个变量,反过来,inode也是作为socket结构的一个变量,分配套接字时,两者之间需要建立关联,见sock_alloc()。
/*



  • 通过inode结构查找对应的socket结构
    */
    inline struct socket *socki_lookup(struct inode *inode)
    {
    return &inode->u.socket_i;//socket结构是作为inode结构中的一个变量
    }



/*



  • 给定文件描述符返回socket结构以及file结构指针
    */



static inline struct socket *sockfd_lookup(int fd, struct file **pfile)
{
struct file *file;
struct inode *inode;
//有效性检查,并从文件描述符中得到对应的file结构
if (fd < 0 || fd >= NR_OPEN || !(file = current->files->fd[fd]))
return NULL;
//得到对应inode结构
inode = file->f_inode;
if (!inode || !inode->i_sock)
return NULL;



if (pfile) 
*pfile = file;//参数返回file结构指针
//返回inode对应的socket结构
return socki_lookup(inode); }  下面开始socket结构的处理了 分配一个socket结构


/*



  • 分配一个socket结构
    */



struct socket *sock_alloc(void)
{
struct inode * inode;
struct socket * sock;



inode = get_empty_inode();//分配一个inode对象
if (!inode)
return NULL;
//获得的inode结构的初始化
inode->i_mode = S_IFSOCK;
inode->i_sock = 1;
inode->i_uid = current->uid;
inode->i_gid = current->gid;

sock = &inode->u.socket_i;
sock->state = SS_UNCONNECTED;
sock->flags = 0;
sock->ops = NULL;
sock->data = NULL;
sock->conn = NULL;
sock->iconn = NULL;
sock->next = NULL;
sock->wait = &inode->i_wait;
sock->inode = inode;//回绑
sock->fasync_list = NULL;
sockets_in_use++;//系统当前使用的套接字数量加1
return sock; }


释放(关闭)套接字
/*



  • Release a socket.
    */
    //释放对端的套接字
    static inline void sock_release_peer(struct socket *peer)
    {
    peer->state = SS_DISCONNECTING;//状态切换到正在处理关闭连接
    wake_up_interruptible(peer->wait);//唤醒指定的注册在等待队列上的进程
    sock_wake_async(peer, 1);//异步唤醒,涉及到套接字状态的改变,需要通知相应进程进行某种处理
    }



/*



  • 释放(关闭)一个套接字
    */



void sock_release(struct socket *sock)
{
int oldstate;
struct socket *peersock, *nextsock;



//只要套接字不是出于未连接状态,就将其置为正在处理关闭连接状态
if ((oldstate = sock->state) != SS_UNCONNECTED)
sock->state = SS_DISCONNECTING;



/*
* Wake up anyone waiting for connections.
*/ //iconn只用于服务器端,表示等待连接但尚未完成连接的客户端socket结构链表
for (peersock = sock->iconn; peersock; peersock = nextsock)
{
nextsock = peersock->next;
sock_release_peer(peersock);
}

/*
* Wake up anyone we're connected to. First, we release the
* protocol, to give it a chance to flush data, etc.
*/
//如果该套接字已连接,peersock指向其连接的服务器端套接字
peersock = (oldstate == SS_CONNECTED) ? sock->conn : NULL;
//转调用release函数
if (sock->ops)
sock->ops->release(sock, peersock);
//释放对端套接字
if (peersock)
sock_release_peer(peersock);
--sockets_in_use; /* 数量减1 */
iput(SOCK_INODE(sock)); } socket 结构 /* * Internal representation of a socket. not all the fields are used by * all configurations: * * server client * conn client connected to server connected to * iconn list of clients -unused- * awaiting connections * wait sleep for clients, sleep for connection, * sleep for i/o sleep for i/o */ //该结构表示一个网络套接字 struct socket { short type; /* 套接字所用的流类型*/ socket_state state;//套接字所处状态 long flags;//标识字段,目前尚无明确作用 struct proto_ops *ops; /* 操作函数集指针 */
/* data保存指向‘私有'数据结构指针,在不同的域指向不同的数据结构 */ //在INET域,指向sock结构,UNIX域指向unix_proto_data结构 void *data; //下面两个字段只用于UNIX域 struct socket *conn; /* 指向客户端连接的服务器端套接字 */ struct socket *iconn; /* 指向正等待连接的客户端 */ struct socket *next;//链表 struct wait_queue **wait; /* 等待队列 */ struct inode *inode;//inode结构指针 struct fasync_struct *fasync_list; /* 异步唤醒链表结构 */ };


创建套接字socket,socket
/*



  • 系统调用,创建套接字socket。涉及到socket结构的创建.
    */



static int sock_socket(int family, int type, int protocol)
{
int i, fd;
struct socket *sock;
struct proto_ops *ops;



/* 匹配应用程序调用socket()函数时指定的协议 */
for (i = 0; i < NPROTO; ++i)
{
if (pops[i] == NULL) continue;
if (pops[i]->family == family)
break;
}
//没有匹配的协议,则出错退出
if (i == NPROTO)
{
return -EINVAL;
}

ops = pops[i];


/*



  • Check that this is a type that we know how to manipulate and

  • the protocol makes sense here. The family can still reject the

  • protocol later.
    */
    //套接字类型检查
    if ((type != SOCK_STREAM && type != SOCK_DGRAM &&
    type != SOCK_SEQPACKET && type != SOCK_RAW &&
    type != SOCK_PACKET) || protocol < 0)
    return(-EINVAL);



/*



  • Allocate the socket and allow the family to set things up. if

  • the protocol is 0, the family is instructed to select an appropriate


  • default.
    /
    //分配套接字结构
    if (!(sock = sock_alloc()))
    {
    printk(“NET: sock_socket: no more sockets\n”);
    return(-ENOSR); /
    Was: EAGAIN, but we are out of
    system resources! */
    }
    //指定对应类型,协议,以及操作函数集
    sock->type = type;
    sock->ops = ops;
    //分配下层sock结构,sock结构是比socket结构更底层的表示一个套接字的结构
    //前面博文有说明:http://blog.csdn.net/wenqian1991/article/details/21740945
    //socket是通用的套接字结构体,而sock与具体使用的协议相关
    if ((i = sock->ops->create(sock, protocol)) < 0)
    {
    sock_release(sock);
    return(i);
    }
    //分配一个文件描述符并在后面返回给应用层序作为以后的操作句柄
    if ((fd = get_fd(SOCK_INODE(sock))) < 0)
    {
    sock_release(sock);
    return(-EINVAL);
    }



    return(fd);
    }





给socket绑定一个端口,bind
/*



  • Bind a name to a socket. Nothing much to do here since it’s

  • the protocol’s responsibility to handle the local address.
    *

  • We move the socket address to kernel space before we call

  • the protocol layer (having also checked the address is ok).
    */
    //建议对于理解这类系统调用函数,先看看应用层的对应函数,如bind,listen等
    //bind函数对应的BSD层函数,用于绑定一个本地地址,服务器端
    //umyaddr表示需要绑定的地址结构,addrlen表示改地址结构的长度
    static int sock_bind(int fd, struct sockaddr *umyaddr, int addrlen)
    {
    struct socket *sock;
    int i;
    char address[MAX_SOCK_ADDR];
    int err;
    //套接字参数有效性检查
    if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
    return(-EBADF);
    //获取fd对应的socket结构
    if (!(sock = sockfd_lookup(fd, NULL)))
    return(-ENOTSOCK);
    //将地址从用户缓冲区复制到内核缓冲区
    if((err=move_addr_to_kernel(umyaddr,addrlen,address))<0)
    return err;
    //转调用bind指向的函数
    if ((i = sock->ops->bind(sock, (struct sockaddr *)address, addrlen)) < 0)
    {
    return(i);
    }
    return(0);
    }



监听客户端请求,listen
/*



  • Perform a listen. Basically, we allow the protocol to do anything

  • necessary for a listen, and if that works, we mark the socket as

  • ready for listening.
    */
    //服务器端监听客户端的连接请求
    //fd表示bind后的套接字,backlog表示排队的最大连接个数
    //listen函数把一个未连接的套接字转换为一个被动套接字,
    //指示内核应接受该套接字的连接请求



static int sock_listen(int fd, int backlog)
{
struct socket *sock;



if (fd < 0 || fd >= NR_OPEN || current->files->fd[fd] == NULL)
return(-EBADF);
if (!(sock = sockfd_lookup(fd, NULL)))
return(-ENOTSOCK);
//前提是没有建立连接
if (sock->state != SS_UNCONNECTED)
{
return(-EINVAL);
}
//调用底层实现函数
if (sock->ops && sock->ops->listen)
sock->ops->listen(sock, backlog);
sock->flags |= SO_ACCEPTCON;//设置标识字段
return(0); }


服务器接收请求,accept
/*



  • For accept, we attempt to create a new socket, set up the link

  • with the client, wake up the client, then return the new

  • connected fd. We collect the address of the connector in kernel

  • space and move it to user at the very end. This is buggy because


  • we open the socket then return an error.
    */
    //用于服务器接收一个客户端的连接请求,这里是值-结果参数,之前有说到
    //fd 为监听后套接字。最后返回一个记录了本地与目的端信息的套接字
    //upeer_sockaddr用来返回已连接客户的协议地址,如果对协议地址不感兴趣就NULL
    static int sock_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
    {
    struct file *file;
    struct socket *sock, *newsock;
    int i;
    char address[MAX_SOCK_ADDR];
    int len;



    if (fd < 0 || fd >= NR_OPEN || ((file = current->files->fd[fd]) == NULL))
    return(-EBADF);
    if (!(sock = sockfd_lookup(fd, &file)))
    return(-ENOTSOCK);
    if (sock->state != SS_UNCONNECTED)//socket各个状态的演变是一步一步来的
    {
    return(-EINVAL);
    }
    //这是tcp连接,得按步骤来
    if (!(sock->flags & SO_ACCEPTCON))//没有listen
    {
    return(-EINVAL);
    }
    //分配一个新的套接字,用于表示后面可进行通信的套接字
    if (!(newsock = sock_alloc()))
    {
    printk(“NET: sock_accept: no more sockets\n”);
    return(-ENOSR); /* Was: EAGAIN, but we are out of system
    resources! */
    }
    newsock->type = sock->type;
    newsock->ops = sock->ops;
    //套接字重定向,目的是初始化新的用于数据传送的套接字
    //继承了第一参数传来的服务器的IP和端口号信息
    if ((i = sock->ops->dup(newsock, sock)) < 0)
    {
    sock_release(newsock);
    return(i);
    }
    //转调用inet_accept函数
    i = newsock->ops->accept(sock, newsock, file->f_flags);
    if ( i < 0)
    {
    sock_release(newsock);
    return(i);
    }
    //分配一个文件描述符,用于以后的数据传送
    if ((fd = get_fd(SOCK_INODE(newsock))) < 0)
    {
    sock_release(newsock);
    return(-EINVAL);
    }
    //返回通信远端的地址
    if (upeer_sockaddr)
    {//得到客户端地址,并复制到用户空间
    newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 1);
    move_addr_to_user(address,len, upeer_sockaddr, upeer_addrlen);
    }
    return(fd);
    }





客户端主动发起连接请求,connect
/*



  • 首先将要连接的源端地址从用户缓冲区复制到内核缓冲区,之后根据套接字目前所处状态


  • 采取对应措施,如果状态有效,转调用connect函数
    */
    //这是客户端,表示客户端向服务器端发送连接请求
    static int sock_connect(int fd, struct sockaddr *uservaddr, int addrlen)
    {
    struct socket *sock;
    struct file *file;
    int i;
    char address[MAX_SOCK_ADDR];
    int err;



    if (fd < 0 || fd >= NR_OPEN || (file=current->files->fd[fd]) == NULL)
    return(-EBADF);
    if (!(sock = sockfd_lookup(fd, &file)))
    return(-ENOTSOCK);



    if((err=move_addr_to_kernel(uservaddr,addrlen,address))<0)
    return err;
    //根据状态采取对应措施
    switch(sock->state)
    {
    case SS_UNCONNECTED:
    /* This is ok… continue with connect /
    break;
    case SS_CONNECTED:
    /
    Socket is already connected /
    if(sock->type == SOCK_DGRAM) /
    Hack for now - move this all into the protocol /
    break;
    return -EISCONN;
    case SS_CONNECTING:
    /
    Not yet connected… we will check this. */



        /*
    * FIXME: for all protocols what happens if you start
    * an async connect fork and both children connect. Clean
    * this up in the protocols!
    */
    break;
    default:
    return(-EINVAL); } i = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, file->f_flags); if (i < 0) {
    return(i); } return(0); } 上面几个函数则是我们应用编程是socket、bind、listen、accept、connect 函数对应的内核的系统调用函数,可以看出,对应的sock_ 函数内部也是转调用了下一层的函数。 所有网络调用函数都具有共同的入口函数 sys_socket /*


  • System call vectors. Since I (RIB) want to rewrite sockets as streams,

  • we have this level of indirection. Not a lot of overhead, since more of

  • the work is done via read/write/select directly.
    *

  • I’m now expanding this up to a higher level to separate the assorted

  • kernel/user space manipulations and global assumptions from the protocol

  • layers proper - AC.
    /
    //本函数是网络栈专用操作函数集的总入口函数,主要是将请求分配,调用具体的底层函数进行处理
    asmlinkage int sys_socketcall(int call, unsigned long *args)
    {
    int er;
    switch(call)
    {
    case SYS_SOCKET://socket函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_socket(get_fs_long(args+0),
    get_fs_long(args+1),//返回地址上的值
    get_fs_long(args+2)));
    case SYS_BIND://bind函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_bind(get_fs_long(args+0),
    (struct sockaddr *)get_fs_long(args+1),
    get_fs_long(args+2)));
    case SYS_CONNECT://connect函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_connect(get_fs_long(args+0),
    (struct sockaddr *)get_fs_long(args+1),
    get_fs_long(args+2)));
    case SYS_LISTEN://listen函数
    er=verify_area(VERIFY_READ, args, 2 * sizeof(long));
    if(er)
    return er;
    return(sock_listen(get_fs_long(args+0),
    get_fs_long(args+1)));
    case SYS_ACCEPT://accept函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_accept(get_fs_long(args+0),
    (struct sockaddr *)get_fs_long(args+1),
    (int *)get_fs_long(args+2)));
    case SYS_GETSOCKNAME://getsockname函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_getsockname(get_fs_long(args+0),
    (struct sockaddr *)get_fs_long(args+1),
    (int *)get_fs_long(args+2)));
    case SYS_GETPEERNAME://getpeername函数
    er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
    if(er)
    return er;
    return(sock_getpeername(get_fs_long(args+0),
    (struct sockaddr *)get_fs_long(args+1),
    (int *)get_fs_long(args+2)));
    case SYS_SOCKETPAIR://socketpair函数
    er=verify_area(VERIFY_READ, args, 4 * sizeof(long));
    if(er)
    return er;
    return(sock_socketpair(get_fs_long(args+0),
    get_fs_long(args+1),
    get_fs_long(args+2),
    (unsigned long *)get_fs_long(args+3)));
    case SYS_SEND://send函数
    er=verify_area(VERIFY_READ, args, 4 * sizeof(unsigned long));
    if(er)
    return er;
    return(sock_send(get_fs_long(args+0),
    (void *)get_fs_long(args+1),
    get_fs_long(args+2),
    get_fs_long(args+3)));
    case SYS_SENDTO://sendto函数
    er=verify_area(VERIFY_READ, args, 6 * sizeof(unsigned long));
    if(er)
    return er;
    return(sock_sendto(get_fs_long(args+0),
    (void *)get_fs_long(args+1),
    get_fs_long(args+2),
    get_fs_long(args+3),
    (struct sockaddr *)get_fs_long(args+4),
    get_fs_long(args+5)));
    case SYS_RECV://recv函数
    er=verify_area(VERIFY_READ, args, 4 * sizeof(unsigned long));
    if(er)
    return er;
    return(sock_recv(get_fs_long(args+0),
    (void *)get_fs_long(args+1),
    get_fs_long(args+2),
    get_fs_long(args+3)));
    case SYS_RECVFROM://recvfrom函数
    er=verify_area(VERIFY_READ, args, 6 * sizeof(unsigned long));
    if(er)
    return er;
    return(sock_recvfrom(get_fs_long(args+0),
    (void *)get_fs_long(args+1),
    get_fs_long(args+2),
    get_fs_long(args+3),
    (struct sockaddr *)get_fs_long(args+4),
    (int *)get_fs_long(args+5)));
    case SYS_SHUTDOWN://shutdown函数
    er=verify_area(VERIFY_READ, args, 2
    sizeof(unsigned long));
    if(er)
    return er;
    return(sock_shutdown(get_fs_long(args+0),
    get_fs_long(args+1)));
    case SYS_SETSOCKOPT://setsockopt函数
    er=verify_area(VERIFY_READ, args, 5sizeof(unsigned long));
    if(er)
    return er;
    return(sock_setsockopt(get_fs_long(args+0),
    get_fs_long(args+1),
    get_fs_long(args+2),
    (char *)get_fs_long(args+3),
    get_fs_long(args+4)));
    case SYS_GETSOCKOPT://getsockopt函数
    er=verify_area(VERIFY_READ, args, 5
    sizeof(unsigned long));
    if(er)
    return er;
    return(sock_getsockopt(get_fs_long(args+0),
    get_fs_long(args+1),
    get_fs_long(args+2),
    (char *)get_fs_long(args+3),
    (int *)get_fs_long(args+4)));
    default:
    return(-EINVAL);
    }
    }



下面再看看socket.c 即BSD socket层中的其余函数
/*



  • Sockets are not seekable.
    */



static int sock_lseek(struct inode *inode, struct file *file, off_t offset, int whence)
{
return(-ESPIPE);
}



/*



  • Read data from a socket. ubuf is a user mode pointer. We make sure the user

  • area ubuf…ubuf+size-1 is writable before asking the protocol.
    */



static int sock_read(struct inode *inode, struct file *file, char *ubuf, int size)
{
struct socket *sock;
int err;



if (!(sock = socki_lookup(inode))) 
{
printk("NET: sock_read: can't find socket for inode!\n");
return(-EBADF);
}
if (sock->flags & SO_ACCEPTCON)
return(-EINVAL);

if(size<0)
return -EINVAL;
if(size==0)
return 0;
if ((err=verify_area(VERIFY_WRITE,ubuf,size))<0)
return err;
return(sock->ops->read(sock, ubuf, size, (file->f_flags & O_NONBLOCK))); }


/*



  • Write data to a socket. We verify that the user area ubuf..ubuf+size-1 is

  • readable by the user process.
    */



static int sock_write(struct inode *inode, struct file *file, char *ubuf, int size)
{
struct socket *sock;
int err;



if (!(sock = socki_lookup(inode))) 
{
printk("NET: sock_write: can't find socket for inode!\n");
return(-EBADF);
}

if (sock->flags & SO_ACCEPTCON)
return(-EINVAL);

if(size<0)
return -EINVAL;
if(size==0)
return 0;

if ((err=verify_area(VERIFY_READ,ubuf,size))<0)
return err;
return(sock->ops->write(sock, ubuf, size,(file->f_flags & O_NONBLOCK))); }


/*



  • You can’t read directories from a socket!
    */



static int sock_readdir(struct inode *inode, struct file *file, struct dirent *dirent,
int count)
{
return(-EBADF);
}



/*



  • With an ioctl arg may well be a user mode pointer, but we don’t know what to do

  • with it - thats up to the protocol still.
    */



int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct socket *sock;



if (!(sock = socki_lookup(inode))) 
{
printk("NET: sock_ioctl: can't find socket for inode!\n");
return(-EBADF);
}
return(sock->ops->ioctl(sock, cmd, arg)); }


static int sock_select(struct inode *inode, struct file *file, int sel_type, select_table * wait)
{
struct socket *sock;



if (!(sock = socki_lookup(inode))) 
{
printk("NET: sock_select: can't find socket for inode!\n");
return(0);
}

/*
* We can't return errors to select, so it's either yes or no.
*/

if (sock->ops && sock->ops->select)
return(sock->ops->select(sock, sel_type, wait));
return(0); }


void sock_close(struct inode *inode, struct file *filp)
{
struct socket *sock;



/*
* It's possible the inode is NULL if we're closing an unfinished socket.
*/

if (!inode)
return; //找对inode对应的socket结构
if (!(sock = socki_lookup(inode)))
{
printk("NET: sock_close: can't find socket for inode!\n");
return;
}
sock_fasync(inode, filp, 0);//更新异步通知列表
sock_release(sock);//释放套接字 }


/*




  • Update the socket async list
    */
    //输入参数on的取值决定是分配还是释放一个fasync_struct结构,该结构用于异步唤醒
    static int sock_fasync(struct inode *inode, struct file *filp, int on)
    {
    struct fasync_struct *fa, *fna=NULL, **prev;
    struct socket *sock;
    unsigned long flags;



    if (on)//分配
    {
    fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
    if(fna==NULL)
    return -ENOMEM;
    }



    sock = socki_lookup(inode);



    prev=&(sock->fasync_list);



    save_flags(flags);//保存当前状态
    cli();



    //从链表中找到与file结构对应的fasync_struct
    for(fa=prev; fa!=NULL; prev=&fa->fa_next,fa=prev)
    if(fa->fa_file==filp)
    break;



    if(on)//分配后的建立联系
    {
    //如果已经有对应的file结构,则释放之前创建的
    if(fa!=NULL)
    {
    kfree_s(fna,sizeof(struct fasync_struct));
    restore_flags(flags);
    return 0;
    }
    //如果没有,则挂载这个新创建的结构
    fna->fa_file=filp;
    fna->magic=FASYNC_MAGIC;
    fna->fa_next=sock->fasync_list;
    sock->fasync_list=fna;
    }
    //释放
    else
    {
    if(fa!=NULL)
    {
    *prev=fa->fa_next;
    kfree_s(fa,sizeof(struct fasync_struct));
    }
    }
    restore_flags(flags);//恢复状态
    return 0;
    }





/*



  • 异步唤醒函数,通过遍历socket结构中fasync_list变量指向的队列,

  • 对队列中每个元素调用kill_fasync函数
    */
    int sock_wake_async(struct socket *sock, int how)
    {
    if (!sock || !sock->fasync_list)
    return -1;
    switch (how)
    {
    case 0:
    //kill_fasync函数即通过相应的进程发送信号。这就是异步唤醒功能
    kill_fasync(sock->fasync_list, SIGIO);
    break;
    case 1:
    if (!(sock->flags & SO_WAITDATA))
    kill_fasync(sock->fasync_list, SIGIO);
    break;
    case 2:
    if (sock->flags & SO_NOSPACE)
    {
    kill_fasync(sock->fasync_list, SIGIO);
    sock->flags &= ~SO_NOSPACE;
    }
    break;
    }
    return 0;
    }



/*



  • 只用于UNIX域名(iconn,conn只用于UNIX域),用于处理一个客户端连接请求
    */



int sock_awaitconn(struct socket *mysock, struct socket *servsock, int flags)
{
struct socket *last;



/*
* We must be listening
*/
//检查服务器端是否是处于监听状态,即可以进行连接
if (!(servsock->flags & SO_ACCEPTCON))
{
return(-EINVAL);
}


/*
* Put ourselves on the server’s incomplete connection queue.
*/
//将本次客户端连接的套接字插入服务器端,socket结构iconn字段指向的链表
//表示客户端正等待连接
mysock->next = NULL;
cli();
if (!(last = servsock->iconn))
servsock->iconn = mysock;
else
{
while (last->next)
last = last->next;
last->next = mysock;
}
mysock->state = SS_CONNECTING;//正在处理连接
mysock->conn = servsock;//客户端连接的服务器端套接字
sti();

/*
* Wake up server, then await connection. server will set state to
* SS_CONNECTED if we're connected.
*/
//唤醒服务器端进程,以处理本地客户端连接
wake_up_interruptible(servsock->wait);
sock_wake_async(servsock, 0);

//检查连接状态
if (mysock->state != SS_CONNECTED)
{
if (flags & O_NONBLOCK)
return -EINPROGRESS;
//等待服务器端处理本次连接
interruptible_sleep_on(mysock->wait);

//检查连接状态,如果仍然没有建立连接
if (mysock->state != SS_CONNECTED &&
mysock->state != SS_DISCONNECTING)
{
/*原因如下
* if we're not connected we could have been
* 1) interrupted, so we need to remove ourselves
* from the server list
* 2) rejected (mysock->conn == NULL), and have
* already been removed from the list
*/
//如果被其他中断,需要主动将本地socket从对方服务器中iconn中删除
if (mysock->conn == servsock)
{
cli();
//找到iconn中的本地socket结构
if ((last = servsock->iconn) == mysock)
servsock->iconn = mysock->next;
else
{
while (last->next != mysock)
last = last->next;
last->next = mysock->next;
}
sti();
}
//被服务器拒绝,本地socket已经被删除,无需手动删除
return(mysock->conn ? -EINTR : -EACCES);//两种原因情况的返回
}
}
return(0); } 其余没有贴出的函数,也基本上是这么个流程。 socket.c 文件中函数的实现绝大多数都是简单调用下层函数,而这些下层函数就是af_inet.c 文件中定义的函数。socket.c 对应 BSD socket层,文件af_inet.c 则对应的是INET socket层。这些上下层次的表示从函数的嵌套调用关系上体现出来。

Category linux