sysfs


sysfs 文件系统总是被挂载在 /sys 挂载点上。虽然在较早期的2.6内核系统上并没有规定 sysfs 的标准挂载位置,可以把 sysfs 挂载在任何位置,但较近的2.6内核修正了这一规则,要求 sysfs 总是挂载在 /sys 目录上;针对以前的 sysfs 挂载位置不固定或没有标准被挂载,有些程序从 /proc/mounts 中解析出 sysfs 是否被挂载以及具体的挂载点,这个步骤现在已经不需要了。请参考附录给出的 sysfs-rules.txt 文件链接。



sysfs 与 proc 相比有很多优点,最重要的莫过于设计上的清晰。一个 proc 虚拟文件可能有内部格式,如 /proc/scsi/scsi ,它是可读可写的,(其文件权限被错误地标记为了 0444 !,这是内核的一个BUG),并且读写格式不一样,代表不同的操作,应用程序中读到了这个文件的内容一般还需要进行字符串解析,而在写入时需要先用字符串格式化按指定的格式写入字符串进行操作;相比而言, sysfs 的设计原则是一个属性文件只做一件事情, sysfs 属性文件一般只有一个值,直接读取或写入。整个 /proc/scsi 目录在2.6内核中已被标记为过时(LEGACY),它的功能已经被相应的 /sys 属性文件所完全取代。新设计的内核机制应该尽量使用 sysfs 机制,而将 proc 保留给纯净的“进程文件系统”。



/sys 下的子目录 所包含的内容
/sys/devices 这是内核对系统中所有设备的分层次表达模型,也是 /sys 文件系统管理设备的最重要的目录结构,下文会对它的内部结构作进一步分析;
/sys/dev 这个目录下维护一个按字符设备和块设备的主次号码(major:minor)链接到真实的设备(/sys/devices下)的符号链接文件,它是在内核 2.6.26 首次引入;
/sys/bus 这是内核设备按总线类型分层放置的目录结构, devices 中的所有设备都是连接于某种总线之下,在这里的每一种具体总线之下可以找到每一个具体设备的符号链接,它也是构成 Linux 统一设备模型的一部分;
/sys/class 这是按照设备功能分类的设备模型,如系统所有输入设备都会出现在 /sys/class/input 之下,而不论它们是以何种总线连接到系统。它也是构成 Linux 统一设备模型的一部分;
/sys/block 这里是系统中当前所有的块设备所在,按照功能来说放置在 /sys/class 之下会更合适,但只是由于历史遗留因素而一直存在于 /sys/block, 但从 2.6.22 开始就已标记为过时,只有在打开了 CONFIG_SYSFS_DEPRECATED 配置下编译才会有这个目录的存在,并且在 2.6.26 内核中已正式移到 /sys/class/block, 旧的接口 /sys/block 为了向后兼容保留存在,但其中的内容已经变为指向它们在 /sys/devices/ 中真实设备的符号链接文件;
/sys/firmware 这里是系统加载固件机制的对用户空间的接口,关于固件有专用于固件加载的一套API,在附录 LDD3 一书中有关于内核支持固件加载机制的更详细的介绍;
/sys/fs 这里按照设计是用于描述系统中所有文件系统,包括文件系统本身和按文件系统分类存放的已挂载点,但目前只有 fuse,gfs2 等少数文件系统支持 sysfs 接口,一些传统的虚拟文件系统(VFS)层次控制参数仍然在 sysctl (/proc/sys/fs) 接口中中;
/sys/kernel 这里是内核所有可调整参数的位置,目前只有 uevent_helper, kexec_loaded, mm, 和新式的 slab 分配器等几项较新的设计在使用它,其它内核可调整参数仍然位于 sysctl (/proc/sys/kernel) 接口中 ;
/sys/module 这里有系统中所有模块的信息,不论这些模块是以内联(inlined)方式编译到内核映像文件(vmlinuz)中还是编译为外部模块(ko文件),都可能会出现在 /sys/module 中:
编译为外部模块(ko文件)在加载后会出现对应的 /sys/module//, 并且在这个目录下会出现一些属性文件和属性目录来表示此外部模块的一些信息,如版本号、加载状态、所提供的驱动程序等;
编译为内联方式的模块则只在当它有非0属性的模块参数时会出现对应的 /sys/module/, 这些模块的可用参数会出现在 /sys/modules//parameters/ 中,
如 /sys/module/printk/parameters/time 这个可读写参数控制着内联模块 printk 在打印内核消息时是否加上时间前缀;
所有内联模块的参数也可以由 ".=" 的形式写在内核启动参数上,如启动内核时加上参数 "printk.time=1" 与 向 "/sys/module/printk/parameters/time" 写入1的效果相同;
没有非0属性参数的内联模块不会出现于此。
/sys/power 这里是系统中电源选项,这个目录下有几个属性文件可以用于控制整个机器的电源状态,如可以向其中写入控制命令让机器关机、重启等。
/sys/slab (对应 2.6.23 内核,在 2.6.24 以后移至 /sys/kernel/slab) 从2.6.23 开始可以选择 SLAB 内存分配器的实现,并且新的 SLUB(Unqueued Slab Allocator)被设置为缺省值;如果编译了此选项,在 /sys 下就会出现 /sys/slab ,里面有每一个 kmem_cache 结构体的可调整参数。对应于旧的 SLAB 内存分配器下的 /proc/slabinfo 动态调整接口,新式的 /sys/kernel/slab/ 接口中的各项信息和可调整项显得更为清晰。



Linux 统一设备模型的基本结构
类型 所包含的内容 对应内核数据结构 对应/sys项
设备(Devices) 设备是此模型中最基本的类型,以设备本身的连接按层次组织 struct device /sys/devices///…/
设备驱动(Device Drivers) 在一个系统中安装多个相同设备,只需要一份驱动程序的支持 struct device_driver /sys/bus/pci/drivers//
总线类型(Bus Types) 在整个总线级别对此总线上连接的所有设备进行管理 struct bus_type /sys/bus/
/
设备类别(Device Classes) 这是按照功能进行分类组织的设备层次树;如 USB 接口和 PS/2 接口的鼠标都是输入设备,都会出现在 /sys/class/input/ 下 struct class /sys/class/*/



Linux 统一设备模型又是以两种基本数据结构进行树型和链表型结构组织的:



kobject: 在 Linux 设备模型中最基本的对象,它的功能是提供引用计数和维持父子(parent)结构、平级(sibling)目录关系,上面的 device, device_driver 等各对象都是以 kobject 基础功能之上实现的;
struct kobject {
const char *name;
struct list_head entry;
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct sysfs_dirent *sd;
struct kref kref;
unsigned int state_initialized:1;
unsigned int state_in_sysfs:1;
unsigned int state_add_uevent_sent:1;
unsigned int state_remove_uevent_sent:1;
};



其中 struct kref 内含一个 atomic_t 类型用于引用计数, parent 是单个指向父节点的指针, entry 用于父 kset 以链表头结构将 kobject 结构维护成双向链表;
kset: 它用来对同类型对象提供一个包装集合,在内核数据结构上它也是由内嵌一个 kboject 实现,因而它同时也是一个 kobject (面向对象 OOP 概念中的继承关系) ,具有 kobject 的全部功能;
struct kset {
struct list_head list;
spinlock_t list_lock;
struct kobject kobj;
struct kset_uevent_ops *uevent_ops;
};



其中的 struct list_head list 用于将集合中的 kobject 按 struct list_head entry 维护成双向链表;
涉及到文件系统实现来说, sysfs 是一种基于 ramfs 实现的内存文件系统,与其它同样以 ramfs 实现的内存文件系统(configfs,debugfs,tmpfs,…)类似, sysfs 也是直接以 VFS 中的 struct inode 和 struct dentry 等 VFS 层次的结构体直接实现文件系统中的各种对象;同时在每个文件系统的私有数据 (如 dentry->d_fsdata 等位置) 上,使用了称为 struct sysfs_dirent 的结构用于表示 /sys 中的每一个目录项。



struct sysfs_dirent {
atomic_t s_count;
atomic_t s_active;
struct sysfs_dirent *s_parent;
struct sysfs_dirent *s_sibling;
const char *s_name;



    union {
struct sysfs_elem_dir s_dir;
struct sysfs_elem_symlink s_symlink;
struct sysfs_elem_attr s_attr;
struct sysfs_elem_bin_attr s_bin_attr;
};

unsigned int s_flags;
ino_t s_ino;
umode_t s_mode;
struct iattr *s_iattr; };


在上面的 kobject 对象中可以看到有向 sysfs_dirent 的指针,因此在sysfs中是用同一种 struct sysfs_dirent 来统一设备模型中的 kset/kobject/attr/attr_group.



具体在数据结构成员上, sysfs_dirent 上有一个 union 共用体包含四种不同的结构,分别是目录、符号链接文件、属性文件、二进制属性文件;其中目录类型可以对应 kobject,在相应的 s_dir 中也有对 kobject 的指针,因此在内核数据结构, kobject 与 sysfs_dirent 是互相引用的;



有了这些概念,再来回头看 sysfs 目录层次图 所表达的 /sys 目录结构就是非常清晰明了:



在 /sys 根目录之下的都是 kset,它们组织了 /sys 的顶层目录视图;
在部分 kset 下有二级或更深层次的 kset;
每个 kset 目录下再包含着一个或多个 kobject,这表示一个集合所包含的 kobject 结构体;
在 kobject 下有属性(attrs)文件和属性组(attr_group),属性组就是组织属性的一个目录,它们一起向用户层提供了表示和操作这个 kobject 的属性特征的接口;
在 kobject 下还有一些符号链接文件,指向其它的 kobject,这些符号链接文件用于组织上面所说的 device, driver, bus_type, class, module 之间的关系;
不同类型如设备类型的、设备驱动类型的 kobject 都有不同的属性,不同驱动程序支持的 sysfs 接口也有不同的属性文件;而相同类型的设备上有很多相同的属性文件;



#ls /sys/
block/ bus/ class/ devices/ firmware/ kernel/ module/ power/
Block目录:包含所有的块设备
Devices目录:包含系统所有的设备,并根据设备挂接的总线类型组织成层次结构
Bus目录:包含系统中所有的总线类型
Drivers目录:包括内核中所有已注册的设备驱动程序
Class目录:系统中的设备类型(如网卡设备,声卡设备等)



sys下面的目录和文件反映了整台机器的系统状况。比如bus,
localhost:/sys/bus#ls
i2c/ ide/ pci/ pci express/ platform/ pnp/ scsi/ serio/ usb/
里面就包含了系统用到的一系列总线,比如pci, ide, scsi, usb等等。比如你可以在usb文件夹中发现你使用的U盘,USB鼠标的信息。



我们要讨论一个文件系统,首先要知道这个文件系统的信息来源在哪里。所谓信息来源是指文件组织存放的地点。比如,我们挂载一个分区,



mount -t vfat /dev/hda2 /mnt/C



我们就知道挂载在/mnt/C下的是一个vfat类型的文件系统,它的信息来源是在第一块硬盘的第2个分区。



但是,你可能根本没有去关心过sysfs的挂载过程,她是这样被挂载的。



mount -t sysfs sysfs /sys



ms看不出她的信息来源在哪。sysfs是一个特殊文件系统,并没有一个实际存放文件的介质。断电后就玩完了。简而言之,sysfs的信息来源是kobject层次结构,读一个sysfs文件,就是动态的从kobject结构提取信息,生成文件。


Category linux