Go 泛型使用和实现原理

性能
要了解泛型的性能及其在 Go 中的实现,首先需要了解一般情况下实现泛型的两种最常见方式。



这是对各种性能的深入研究和围绕它们进行的讨论的简要介绍。你大概率不太需要关心 Go 中泛型的性能。
虚拟方法表
在编译器中实现泛型的一种方法是使用 Virtual Method Table。泛型函数被修改成只接受指针作为参数的方式。然后,这些值被分配到堆上,这些值的指针被传递给泛型函数。这样做是因为指针看起来总是一样的,不管它指向的是什么类型。



如果这些值是对象,而泛型函数需要调用这些对象的方法,它就不能再这样做了。该函数只有一个指向对象的指针,不知道它们的方法在哪里。因此,它需要一个可以查询方法的内存地址的表格:Virtual Method Table。这种所谓的动态调度已经被 Go 和 Java 等语言中的接口所使用。



Virtual Method Table 不仅可以用来实现泛型,还可以用来实现其他类型的多态性。然而,推导这些指针和调用虚拟函数要比直接调用函数慢,而且使用 Virtual Method Table 会阻止编译器进行优化。



单态化
一个更简单的方法是单态化(Monomorphization),编译器为每个被调用的数据类型生成一个泛型函数的副本。



func maxT Numeric T {
// …
}



larger := max(3, 5)
由于上面显示的max函数是用两个整数调用的,编译器在对代码进行单态化时将为 int 生成一个 max 的副本。



func maxInt(a, b int) int {
// …
}



larger := maxInt(3, 5)
最大的优势是,Monomorphization 带来的运行时性能明显好于使用 Virtual Method Table。直接方法调用不仅更有效率,而且还能适用整个编译器的优化链。不过,这样做的代价是编译时长,为所有相关类型生成泛型函数的副本是非常耗时的。



Go 的实现
这两种方法中哪一种最适合 Go?快速编译很重要,但运行时性能也很重要。为了满足这些要求,Go 团队决定在实现泛型时混合两种方法。



Go 使用 Monomorphization,但试图减少需要生成的函数副本的数量。它不是为每个类型创建一个副本,而是为内存中的每个布局生成一个副本:int、float64、Node 和其他所谓的 “值类型” 在内存中看起来都不一样,因此泛型函数将为所有这些类型复制副本。



与值类型相反,指针和接口在内存中总是有相同的布局。编译器将为指针和接口的调用生成一个泛型函数的副本。就像 Virtual Method Table 一样,泛型函数接收指针,因此需要一个表来动态地查找方法地址。在 Go 实现中的字典与虚拟方法表的性能特点相同。



结论
这种混合方法的好处是,你在使用值类型的调用中获得了 Monomorphization 的性能优势,而只在使用指针或接口的调用中付出了 Virtual Method Table 的成本。



在性能讨论中经常被忽略的是,所有这些好处和成本只涉及到函数的调用。通常情况下,大部分的执行时间是在函数内部使用的。调用方法的性能开销可能不会成为性能瓶颈,即使是这样,也要考虑先优化函数实现,再考虑调用开销。

https://zhuanlan.zhihu.com/p/509290914


Category golang