文件:startup.go ,代码如下:
package main
import “fmt”
func main() {
fmt.Println(“startup”)
}
上面是golang程序的入口函数,即main包中的main函数。但main.main并发golang真正的程序入口,golang存在一个运行时(runtime),与我们的编写的golang代码一起编译、链接成可执行文件。操作系统加载可执行文件运行时,找到真正的entrypoint,开始执行程序指令,程序就已经正在运行了。
问题:golang程序的真正入口(entrypoint)在哪里?
首先,先看看生成的汇编代码,执行编译命令如下:
go tool compile -N -l -S startup.go > startup.s
编译参数(gcflags)简单说明:
-N: 禁止优化代码(disable optimizations),优化后生成的汇编代码并不利于分析代码
-l :禁止内联(disable inlining)
-S:打印输出汇编代码(print assembly listing),这里把输出重定向到startup.s文件
具体编译参数,可参考go compiler source code: src/cmd/compile/internal/gc/main.go文件。
startup.s文件内容如下:
”“.main STEXT size=152 args=0x0 locals=0x68
0x0000 00000 (startup.go:5) TEXT ““.main(SB), $104-0
0x0000 00000 (startup.go:5) MOVQ (TLS), CX
0x0009 00009 (startup.go:5) CMPQ SP, 16(CX)
0x000d 00013 (startup.go:5) JLS 142
0x000f 00015 (startup.go:5) SUBQ $104, SP
0x0013 00019 (startup.go:5) MOVQ BP, 96(SP)
0x0018 00024 (startup.go:5) LEAQ 96(SP), BP
…
0x0069 00105 (startup.go:6) MOVQ AX, (SP)
0x006d 00109 (startup.go:6) MOVQ $1, 8(SP)
0x0076 00118 (startup.go:6) MOVQ $1, 16(SP)
0x007f 00127 (startup.go:6) PCDATA $0, $1
0x007f 00127 (startup.go:6) CALL fmt.Println(SB)
0x0084 00132 (startup.go:7) MOVQ 96(SP), BP
0x0089 00137 (startup.go:7) ADDQ $104, SP
0x008d 00141 (startup.go:7) RET
…
““.init STEXT size=104 args=0x0 locals=0x8
0x0000 00000 (
0x0000 00000 (
0x0009 00009 (
...
0x0031 00049 (
0x0038 00056 (
0x003a 00058 (
0x003c 00060 (
0x003e 00062 (
0x003e 00062 (
0x0043 00067 (
0x0045 00069 (
0x004c 00076 (
0x004c 00076 (
0x0051 00081 (
...
从上面汇编代码来看,我们只看到main.main和main.init代码,并没有看到任何运行时的代码段。
直接生成可执行文件,命令如下:
go tool objdump startup > ../startup.S
由于汇编代码太多,不方便查看,因此另辟蹊径。
gdb startup
(gdb) info files
Symbols from “/root/code/mq30/src/startup”.
Local exec file:
`/root/code/mq30/src/startup’, file type elf64-x86-64.
Entry point: 0x44f4d0
0x0000000000401000 - 0x0000000000482178 is .text
0x0000000000483000 - 0x00000000004c4a7a is .rodata
0x00000000004c4ba0 - 0x00000000004c56e8 is .typelink
0x00000000004c56e8 - 0x00000000004c5728 is .itablink
0x00000000004c5728 - 0x00000000004c5728 is .gosymtab
0x00000000004c5740 - 0x000000000051368f is .gopclntab
0x0000000000514000 - 0x0000000000520bdc is .noptrdata
0x0000000000520be0 - 0x00000000005276f0 is .data
0x0000000000527700 - 0x0000000000543d88 is .bss
0x0000000000543da0 - 0x0000000000546438 is .noptrbss
0x0000000000400f9c - 0x0000000000401000 is .note.go.buildid
从上图可知,入口点Entry Point在0x44f4d0,现在单步进去查看。
(gdb) b *0x44f4d0
Breakpoint 1 at 0x44f4d0: file /usr/local/src/go/src/runtime/rt0_linux_amd64.s, line 8.
(gdb) r
Starting program: /root/code/mq30/src/startup
Breakpoint 1, _rt0_amd64_linux () at /usr/local/src/go/src/runtime/rt0_linux_amd64.s:8
8 JMP _rt0_amd64(SB)
(gdb)
从上图可知,程序入口点在runtime/rt0_linux_amd64.s的代码段_rt0_amd64。
(gdb) n
103 MOVQ SP, (g_stack+stack_hi)(DI)
(gdb) n
106 MOVL $0, AX
(gdb) n
107 CPUID
(gdb) info registers
rax 0x0 0
rbx 0x7ffffffee0f8 140737488281848
rcx 0x0 0
rdx 0x0 0
rsi 0x7fffffffe0c8 140737488347336
rdi 0x527f60 5406560
rbp 0x0 0x0
rsp 0x7fffffffe090 0x7fffffffe090
r8 0x0 0
r9 0x0 0
r10 0x0 0
r11 0x0 0
r12 0x0 0
r13 0x0 0
r14 0x0 0
r15 0x0 0
rip 0x44be4b 0x44be4b <runtime.rt0_go+59>
eflags 0x206 [ PF IF ]
cs 0x33 51
ss 0x2b 43
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0
(gdb)
可以按照上图命令,n和info registers查看调试汇编代码,这里不展开,以后会针对golang汇编深入讨论。
另外,也可使用dlv调试查看,这里不展开,以后会针对dlv深入讨论。
dlv对goroutine的支持更好,我使用gdb的没有找到goroutine的调试方法,可能姿势不对
gdb对于局部引用变量无法调试,dlv不会
func main() {
i := 10
j := &i
}
如上代码,gdb 使用 p j 打印变量j的时候报错,dlv却可以
dlv无法调试interface等Go内部实现的一些结构,gdb是可以的
但是dlv 没有info命令
找到入口文件和代码段(函数),就可以直接查看代码,一步步跟踪查看。
文件asm_amd64.s,主要流程代码如下:
// _rt0_amd64 is common startup code for most amd64 systems when using
// internal linking. This is the entry point for the program from the
// kernel for an ordinary -buildmode=exe program. The stack holds the
// number of arguments and the C-style argv.
TEXT _rt0_amd64(SB),NOSPLIT,$-8
MOVQ 0(SP), DI // argc
LEAQ 8(SP), SI // argv
JMP runtime·rt0_go(SB)
// main is common startup code for most amd64 systems when using
// external linking. The C startup code will call the symbol “main”
// passing argc and argv in the usual C ABI registers DI and SI.
TEXT main(SB),NOSPLIT,$-8
JMP runtime·rt0_go(SB)
TEXT runtime·rt0_go(SB),NOSPLIT,$0
…
// save m->g0 = g0
MOVQ CX, m_g0(AX)
// save m0 to g0->m
MOVQ AX, g_m(CX)
CLD // convention is D is always left cleared
CALL runtime·check(SB)
MOVL 16(SP), AX // copy argc
MOVL AX, 0(SP)
MOVQ 24(SP), AX // copy argv
MOVQ AX, 8(SP)
CALL runtime·args(SB)
CALL runtime·osinit(SB)
CALL runtime·schedinit(SB)
// create a new goroutine to start program
MOVQ $runtime·mainPC(SB), AX // entry
PUSHQ AX
PUSHQ $0 // arg size
CALL runtime·newproc(SB)
POPQ AX
POPQ AX
// start this M
CALL runtime·mstart(SB)
CALL runtime·abort(SB) // mstart should never return
RET
// Prevent dead-code elimination of debugCallV1, which is
// intended to be called by debuggers.
MOVQ $runtime·debugCallV1(SB), AX
RET 此处省略了不少汇编代码,主要与golang栈帧布局,TLS(Thread Local Storage)相关,以后会继续探讨golang汇编、golang栈帧布局。
接下来,会围绕上图中的汇编代码,进一步跟踪golang程序启动流程,主要查看golang程序在启动过程中,都做了哪些工作,才到我们业务程序的入口main.main:
// save m->g0 = g0
MOVQ CX, m_g0(AX)
// save m0 to g0->m
MOVQ AX, g_m(CX)
问题:m0,g0在哪里声明的呢?
var (
m0 m
g0 g
raceprocctx0 uintptr
)
在proc.go文件中,我们找到了m0, g0的生命定义,那m和g是什么呢?g就是Goroutine, m就是Machine,对应着系统内核线程,
另外还有p,即Processor,都是golang实现Goroutine协程调用的抽象组件,以后会继续探讨golang协程调度器的实现。
runtime·check(SB)
即在runtime1.go文件定义的args函数:
func check() {
var (
a int8
b uint8
c int16
d uint16
e int32
f uint32
g int64
h uint64
i, i1 float32
j, j1 float64
k unsafe.Pointer
l *uint16
m [4]byte
)
type x1t struct {
x uint8
}
type y1t struct {
x1 x1t
y uint8
}
var x1 x1t
var y1 y1t
if unsafe.Sizeof(a) != 1 {
throw("bad a")
}
if unsafe.Sizeof(b) != 1 {
throw("bad b")
}
... } 主要是对一些类型大小进行检查。
CALL runtime·args(SB)
即在runtime1.go文件定义的check函数:
func args(c int32, v **byte) {
argc = c
argv = v
sysargs(c, v)
}
CALL runtime·osinit(SB)
即在os_windows.go文件定义的osinit函数:
func osinit() {
//切换到系统栈调用Windows API
asmstdcallAddr = unsafe.Pointer(funcPC(asmstdcall))
//usleep
usleep2Addr = unsafe.Pointer(funcPC(usleep2))
//切换到线程地址
switchtothreadAddr = unsafe.Pointer(funcPC(switchtothread))
setBadSignalMsg()
//加载系统调用
loadOptionalSyscalls()
//禁止显示windows错误报告窗口
disableWER()
//异常回调
initExceptionHandler()
//CTRL+C关闭事件回调
stdcall2(_SetConsoleCtrlHandler, funcPC(ctrlhandler), 1)
timeBeginPeriodRetValue = osRelax(false)
//获取CPU逻辑核数
ncpu = getproccount()
//获取页大小
physPageSize = getPageSize()
// Windows dynamic priority boosting assumes that a process has different types
// of dedicated threads -- GUI, IO, computational, etc. Go processes use
// equivalent threads that all do a mix of GUI, IO, computations, etc.
// In such context dynamic priority boosting does nothing but harm, so we turn it off.
stdcall2(_SetProcessPriorityBoost, currentProcess, 1) } osinit在不同系统下有不同的实现,主要在runtime/os_*.go文件实现。
runtime·schedinit(SB)
即在proc.go文件定义的schedinit函数:
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call runtime·mstart
//
// The new G calls runtime·main.
func schedinit() {
//race detector: 竞态检测器
// raceinit must be the first call to race detector.
// In particular, it must be done before mallocinit below calls racemapshadow.
//获取当前线程的绑定的g,初始化时,只有主线程,返回g0
g := getg()
if raceenabled {
g.racectx, raceprocctx0 = raceinit()
}
//限制m最大数量10000
sched.maxmcount = 10000
//初始栈跟踪
tracebackinit()
//校验模块符号表
moduledataverify()
//初始化栈空间
stackinit()
//初始化栈空间
mallocinit()
//初始化m
mcommoninit(_g_.m)
//初始化CPU选项
cpuinit() // must run before alginit
//初始化hash
alginit() // maps must not be used before this call
//激活模块
modulesinit() // provides activeModules
typelinksinit() // uses maps, activeModules
itabsinit() // uses activeModules
msigsave(_g_.m)
initSigmask = _g_.m.sigmask
//获取命令行参数
goargs()
//获取env参数
goenvs()
//获取GODEBUG/GOTRACE环境变量参数
parsedebugvars()
//初始gc
gcinit()
sched.lastpoll = uint64(nanotime())
//设置最大p数量上限值
procs := ncpu//默认与系统CPU逻辑核数相关
if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
procs = n
}
//初始化p, 初始状态_Pgcstop
if procresize(procs) != nil {
throw("unknown runnable goroutine during bootstrap")
}
//写屏障需要P创建后
// For cgocheck > 1, we turn on the write barrier at all times
// and check all pointer writes. We can't do this until after
// procresize because the write barrier needs a P.
if debug.cgocheck > 1 {
writeBarrier.cgo = true
writeBarrier.enabled = true
for _, p := range allp {
p.wbBuf.reset()
}
}
if buildVersion == "" {
// Condition should never trigger. This code just serves
// to ensure runtime·buildVersion is kept in the resulting binary.
buildVersion = "unknown"
} } 这里是一个大块头,每个大模块的初始化都放在这里进行了,如栈设计、堆内存分配器、gc(垃圾回收器)、协程调度器等,这些都是我们需要进一步探讨的内容。
问题:golang是多线程模型还是单线程模型?
//限制m最大数量默认10000,即限制golang程序最大线程数
sched.maxmcount = 10000
//proc.go
func checkmcount() {
// sched lock is held
if mcount() > sched.maxmcount {
print(“runtime: program exceeds “, sched.maxmcount, “-thread limit\n”)
throw(“thread exhaustion”)
}
}
小总结:golang程序是多线程模型的,而且默认情况下最大线程数不能超过10000。
// create a new goroutine to start program
MOVQ $runtime·mainPC(SB), AX // entry
PUSHQ AX
PUSHQ $0 // arg size
CALL runtime·newproc(SB)
POPQ AX
POPQ AX
此处调用了runtime.newproc函数,并将runtime·mainPC作为runtime.newproc的参数,即回调用函数参入。
runtime.newproc函数在proc.go中定义,那runtime.mainPC对应哪个函数呢?
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
从上图可以看出,runtime·mainPC即使runtime.main函数的地址。
问题:runtime.main作为runtime·newproc的参数传入,runtime·newproc是何时调用呢?
先看看runtime·newproc函数的定义:
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g’s waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.
//go:nosplit
func newproc(siz int32, fn funcval) {
println(“newproc: create new go routine”)
//创建go routine
//对routine回调参数的封装
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
//获取当前goroutine
gp := getg()
//获取程序计数器
pc := getcallerpc()
systemstack(func() {
//使用系统栈创建go routine
newproc1(fn, (uint8)(argp), siz, gp, pc)
})
}
// Create a new g running fn with narg bytes of arguments starting
// at argp. callerpc is the address of the go statement that created
// this. The new g is put on the queue of g’s waiting to run.
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
g := getg()
if fn == nil {
_g_.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
_g_.m.locks++ // disable preemption because it can be holding p in a local var
siz := narg
siz = (siz + 7) &^ 7
// We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
}
//当前goroutine的处理线程m绑定的处理器p
_p_ := _g_.m.p.ptr()
//从回收列表中查找goroutine,避免重复创建
newg := gfget(_p_)
if newg == nil {
//回收列表中不存在可用goroutine,则重新分配一个goroutine结构及其栈空间,栈空间使用内核分配
newg = malg(_StackMin)
//设置状态为死忙状态
casgstatus(newg, _Gidle, _Gdead)
//加到g列表中
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
if newg.stack.hi == 0 {
throw("newproc1: newg missing stack")
}
if readgstatus(newg) != _Gdead {
throw("newproc1: new g is not Gdead")
}
totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
totalSize += -totalSize & (sys.SpAlign - 1) // align to spAlign
//栈顶
sp := newg.stack.hi - totalSize
spArg := sp
if usesLR {
// caller's LR
*(*uintptr)(unsafe.Pointer(sp)) = 0
prepGoExitFrame(sp)
spArg += sys.MinFrameSize
}
if narg > 0 {
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
// This is a stack-to-stack copy. If write barriers
// are enabled and the source stack is grey (the
// destination is always black), then perform a
// barrier copy. We do this *after* the memmove
// because the destination stack may have garbage on
// it.
if writeBarrier.needed && !_g_.m.curg.gcscandone {
f := findfunc(fn.fn)
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
if stkmap.nbit > 0 {
// We're in the prologue, so it's always stack map index 0.
bv := stackmapdata(stkmap, 0)
bulkBarrierBitmap(spArg, spArg, uintptr(bv.n)*sys.PtrSize, 0, bv.bytedata)
}
}
}
//调度器保存寄存器信息
memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
gostartcallfn(&newg.sched, fn)//存储了回调函数
newg.gopc = callerpc
newg.ancestors = saveAncestors(callergp)
newg.startpc = fn.fn
if _g_.m.curg != nil {
newg.labels = _g_.m.curg.labels
}
if isSystemGoroutine(newg, false) {
atomic.Xadd(&sched.ngsys, +1)
}
newg.gcscanvalid = false
casgstatus(newg, _Gdead, _Grunnable)
if _p_.goidcache == _p_.goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
_p_.goidcache -= _GoidCacheBatch - 1
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
}
newg.goid = int64(_p_.goidcache)
_p_.goidcache++
if raceenabled {
newg.racectx = racegostart(callerpc)
}
if trace.enabled {
traceGoCreate(newg, newg.startpc)
}
//将go routine放进p任务队列
runqput(_p_, newg, true)
//由空闲的p,直接唤醒新创建的go routine
if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
} } 从上图可得出小总结:
1、go协程Goroutine有调度状态,栈空间、寄存器sp/pc, 父亲Goroutine, 唯一id(goid) ,入口函数(启动函数)
2、新创建的Goroutine状态为_Grunnable,并放入p的本地队列等待调度
3、golang中go statement入口就是newproc,即go func(){}实际上newproc(func(){})的调用
这里我们不深究golang协程调度器如何实现,这里我们关心,我们传入的回调参数runtime.main是如何给调用的:
这里我直接查看Goroutine执行函数,至于如何调用到这里的,这里不深究:
// Schedules gp to run on the current M.
// If inheritTime is true, gp inherits the remaining time in the
// current time slice. Otherwise, it starts a new time slice.
// Never returns.
//
// Write barriers are allowed because this is called immediately after
// acquiring a P in several places.
//
//go:yeswritebarrierrec
func execute(gp *g, inheritTime bool) {
g := getg()
casgstatus(gp, _Grunnable, _Grunning)
gp.waitsince = 0
gp.preempt = false
gp.stackguard0 = gp.stack.lo + _StackGuard
if !inheritTime {
_g_.m.p.ptr().schedtick++
}
_g_.m.curg = gp
gp.m = _g_.m
// Check whether the profiler needs to be turned on or off.
hz := sched.profilehz
if _g_.m.profilehz != hz {
setThreadCPUProfiler(hz)
}
if trace.enabled {
// GoSysExit has to happen when we have a P, but before GoStart.
// So we emit it here.
if gp.syscallsp != 0 && gp.sysblocktraced {
traceGoSysExit(gp.sysexitticks)
}
traceGoStart()
}
gogo(&gp.sched) } 关键点在于gogo(&gp.sched),在上面创建Goroutine代码中,已经存储了Goroutine调度需要的上下文sched,并且保存了我们的回调函数:
gostartcallfn(&newg.sched, fn)//存储了回调函数
调用gogo后,就会执行我们的回调函数,即Goroutine开始运行。
假设新创建的Goroutine已经正在运行,即会调用runtime.main,代码如下:
// The main goroutine.
func main() {
g := getg()
// Racectx of m0->g0 is used only as the parent of the main goroutine.
// It must not be used for anything else.
g.m.g0.racectx = 0
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
// Using decimal instead of binary GB and MB because
// they look nicer in the stack overflow failure message.
if sys.PtrSize == 8 {
maxstacksize = 1000000000
} else {
maxstacksize = 250000000
}
// Allow newproc to start new Ms.
mainStarted = true
if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
systemstack(func() {
newm(sysmon, nil)
})
}
// Lock the main goroutine onto this, the main OS thread,
// during initialization. Most programs won't care, but a few
// do require certain calls to be made by the main thread.
// Those can arrange for main.main to run in the main thread
// by calling runtime.LockOSThread during initialization
// to preserve the lock.
lockOSThread()
if g.m != &m0 {
throw("runtime.main not on m0")
}
runtime_init() // must be before defer
if nanotime() == 0 {
throw("nanotime returning zero")
}
// Defer unlock so that runtime.Goexit during init does the unlock too.
needUnlock := true
defer func() {
if needUnlock {
unlockOSThread()
}
}()
// Record when the world started.
runtimeInitTime = nanotime()
gcenable()
main_init_done = make(chan bool)
if iscgo {
if _cgo_thread_start == nil {
throw("_cgo_thread_start missing")
}
if GOOS != "windows" {
if _cgo_setenv == nil {
throw("_cgo_setenv missing")
}
if _cgo_unsetenv == nil {
throw("_cgo_unsetenv missing")
}
}
if _cgo_notify_runtime_init_done == nil {
throw("_cgo_notify_runtime_init_done missing")
}
// Start the template thread in case we enter Go from
// a C-created thread and need to create a new thread.
startTemplateThread()
cgocall(_cgo_notify_runtime_init_done, nil)
}
fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
fn()
close(main_init_done)
needUnlock = false
unlockOSThread()
if isarchive || islibrary {
// A program compiled with -buildmode=c-archive or c-shared
// has a main, but it is not executed.
return
}
fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
fn()
if raceenabled {
racefini()
}
// Make racy client program work: if panicking on
// another goroutine at the same time as main returns,
// let the other goroutine finish printing the panic trace.
// Once it does, it will exit. See issues 3934 and 20018.
if atomic.Load(&runningPanicDefers) != 0 {
// Running deferred functions should not take long.
for c := 0; c < 1000; c++ {
if atomic.Load(&runningPanicDefers) == 0 {
break
}
Gosched()
}
}
if atomic.Load(&panicking) != 0 {
gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
}
exit(0)
for {
var x *int32
*x = 0
} } 也就是我们新创建的Goroutine, 有几个关键点如下:
main_init
main_main
newm(sysmon, nil)
exit(0)
看到main_init,main_main是否似曾相似,没错,这就是我们业务程序的入口main.init,main.main,这称为main routine。
恭喜,我们终于整个启动流程走了一遍。
问题:main.main没有 for {time.Sleep(1000)}等阻塞操作,是否会直接退出应用?
会,看exit(0),退出了整个应用。
newm(sysmon, nil)顺便提一下,new一个m,即创建了一个新系统内核线程,这也可以佐证golang是多线程模型的。
可以看到单独开辟了一个线程用于gc抢占式和epoll相关代码,这里不深究。
刚刚,我们是假设main routine已经运行了,其实是否可运行依赖于可用的m和可用的p。
还有剩余的汇编代码,就可以解释这块:
// start this M
CALL runtime·mstart(SB)
CALL runtime·abort(SB) // mstart should never return
RET
// Called to start an M.
//
// This must not split the stack because we may not even have stack
// bounds set up yet.
//
// May run during STW (because it doesn’t have a P yet), so write
// barriers are not allowed.
//
//go:nosplit
//go:nowritebarrierrec
func mstart() {
g := getg()
…
mstart1()
…
mexit(osStack)
}
func mstart1() {
g := getg()
…
save(getcallerpc(), getcallersp())
asminit()
minit()
…
schedule()
}
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func schedule() {
_g_ := getg()
...
execute(gp, inheritTime) } 这是一个用不返回的函数,类似for { func1... },这也是为什么程序没退出,Gorourine一直得到调度的原因:一直没退出,一直会调度可运行的Goroutine。
总结:探讨了从runtime入口到应用入口main.main的流程追踪,追踪过程中,给出了一些小总结,但也留下了很多待进一步探讨的主题,如golang汇编,golang栈帧设计,golang堆内存分配,golang协程调度,gc垃圾回收器等,这里不可能面面俱到,毕竟探讨的是golang程序的一生,只能抓住主要流程,细节仍需继续探讨
https://blog.csdn.net/QQ1130141391/article/details/96197570
golang执行的主要几个步骤如下:
//执行runtime_init()
runtime_init()
//启动GC
gcenable()
//执行main_init()
fn := main_init
fn()
//执行main函数,此时程序进入用户的代码
fn = main_main
fn()
接下来,看一下gcenable()都做了什么事情。
// gcenable is called after the bulk of the runtime initialization,
// just before we’re about to start letting user code run.
// It kicks off the background sweeper goroutine and enables GC.
func gcenable() {
c := make(chan int, 1)
go bgsweep(c)
<-c
memstats.enablegc = true // now that runtime is initialized, GC is okay
}