var (
vars sync.Map // map[string]Var
varKeysMu sync.RWMutex
varKeys []string // sorted
)
func NewString(name string) *String {
v := new(String)
Publish(name, v)
return v
}
inerString := "hello"
pubString := expvar.NewString(inerString)
pubString.Set(inerString)
expvar.Do(kvFunc)
go自带的runtime包拥有各种功能,包括goroutine数量,设置逻辑线程数量,当前go版本,当前系统类型等等。前两天发现了go标准库还有一个更好用的可以监控服务运行各项指标和状态的包—-expvar。
expvar包为监控变量提供了一个标准化的接口,它以 JSON 格式通过 /debug/vars 接口以 HTTP 的方式公开这些监控变量以及我自定义的变量。通过它,再加上metricBeat,ES和Kibana,可以很轻松的对服务进行监控。我这里是用gin把接口暴露出来,其实用别的web框架也都可以。下面我们来看一下如何使用它:
router := gin.Default() //初始化一个gin实例
router.GET(“/debug/vars”, monitor.GetCurrentRunningStats) //接口路由,如果url不是/debug/vars,则用metricBeat去获取会出问题
s := &http.Server{
Addr: “:” + config.GetConfig().Listen.Port,
Handler: router,
ReadTimeout: 5 * time.Second,
WriteTimeout: 5 * time.Second,
MaxHeaderBytes: 1 « 20,
}
s.ListenAndServe() //开始监听
对应的handler函数
package monitor
import (
“encoding/json”
“expvar”
“fmt”
“github.com/gin-gonic/gin”
“math”
“net/http”
“quotedata/models”
“runtime”
“sort”
“time”
)
var CuMemoryPtr *map[string]models.Kline
var BTCMemoryPtr *map[string]models.Kline
// 开始时间
var start = time.Now()
// calculateUptime 计算运行时间
func calculateUptime() interface{} {
return time.Since(start).String()
}
// currentGoVersion 当前 Golang 版本
func currentGoVersion() interface{} {
return runtime.Version()
}
// getNumCPUs 获取 CPU 核心数量
func getNumCPUs() interface{} {
return runtime.NumCPU()
}
// getGoOS 当前系统类型
func getGoOS() interface{} {
return runtime.GOOS
}
// getNumGoroutins 当前 goroutine 数量
func getNumGoroutins() interface{} {
return runtime.NumGoroutine()
}
// getNumCgoCall CGo 调用次数
func getNumCgoCall() interface{} {
return runtime.NumCgoCall()
}
// 业务特定的内存数据
func getCuMemoryMap() interface{} {
if CuMemoryPtr == nil {
return 0
} else {
return len(CuMemoryPtr)
}
}
// 业务特定的内存数据
func getBTCMemoryMap() interface{} {
if BTCMemoryPtr == nil {
return 0
} else {
return len(BTCMemoryPtr)
}
}
var lastPause uint32
// getLastGCPauseTime 获取上次 GC 的暂停时间
func getLastGCPauseTime() interface{} {
var gcPause uint64
ms := new(runtime.MemStats)
statString := expvar.Get(“memstats”).String()
if statString != “” {
json.Unmarshal([]byte(statString), ms)
if lastPause == 0 || lastPause != ms.NumGC {
gcPause = ms.PauseNs[(ms.NumGC+255)%256]
lastPause = ms.NumGC
} }
return gcPause
}
// GetCurrentRunningStats 返回当前运行信息
func GetCurrentRunningStats(c *gin.Context) {
c.Writer.Header().Set(“Content-Type”, “application/json; charset=utf-8”)
first := true
report := func(key string, value interface{}) {
if !first {
fmt.Fprintf(c.Writer, “,\n”)
}
first = false
if str, ok := value.(string); ok {
fmt.Fprintf(c.Writer, “%q: %q”, key, str)
} else {
fmt.Fprintf(c.Writer, “%q: %v”, key, value)
}
}
fmt.Fprintf(c.Writer, “{\n”)
expvar.Do(func(kv expvar.KeyValue) {
report(kv.Key, kv.Value)
})
fmt.Fprintf(c.Writer, “\n}\n”)
c.String(http.StatusOK, “”)
}
func init() { //这些都是我自定义的变量,发布到expvar中,每次请求接口,expvar会自动去获取这些变量,并返回给我
expvar.Publish(“运行时间”, expvar.Func(calculateUptime))
expvar.Publish(“version”, expvar.Func(currentGoVersion))
expvar.Publish(“cores”, expvar.Func(getNumCPUs))
expvar.Publish(“os”, expvar.Func(getGoOS))
expvar.Publish(“cgo”, expvar.Func(getNumCgoCall))
expvar.Publish(“goroutine”, expvar.Func(getNumGoroutins))
expvar.Publish(“gcpause”, expvar.Func(getLastGCPauseTime))
expvar.Publish(“CuMemory”, expvar.Func(getCuMemoryMap))
expvar.Publish(“BTCMemory”, expvar.Func(getBTCMemoryMap))
}
可以看到,expvar返回给了我我之前自定义的数据,以及它本身要默认返回的数据,比如memstats。这个memstats是干嘛的呢,其实看到这些字段名就可以知道,是各种内存堆栈以及GC的一些信息,具体可以看源码注释:
ype MemStats struct {
// General statistics.
// Alloc is bytes of allocated heap objects.
//
// This is the same as HeapAlloc (see below).
Alloc uint64
// TotalAlloc is cumulative bytes allocated for heap objects.
//
// TotalAlloc increases as heap objects are allocated, but
// unlike Alloc and HeapAlloc, it does not decrease when
// objects are freed.
TotalAlloc uint64
// Sys is the total bytes of memory obtained from the OS.
//
// Sys is the sum of the XSys fields below. Sys measures the
// virtual address space reserved by the Go runtime for the
// heap, stacks, and other internal data structures. It’s
// likely that not all of the virtual address space is backed
// by physical memory at any given moment, though in general
// it all was at some point.
Sys uint64
// Lookups is the number of pointer lookups performed by the
// runtime.
//
// This is primarily useful for debugging runtime internals.
Lookups uint64
// Mallocs is the cumulative count of heap objects allocated.
// The number of live objects is Mallocs - Frees.
Mallocs uint64
// Frees is the cumulative count of heap objects freed.
Frees uint64
// Heap memory statistics.
//
// Interpreting the heap statistics requires some knowledge of
// how Go organizes memory. Go divides the virtual address
// space of the heap into “spans”, which are contiguous
// regions of memory 8K or larger. A span may be in one of
// three states:
//
// An “idle” span contains no objects or other data. The
// physical memory backing an idle span can be released back
// to the OS (but the virtual address space never is), or it
// can be converted into an “in use” or “stack” span.
//
// An “in use” span contains at least one heap object and may
// have free space available to allocate more heap objects.
//
// A “stack” span is used for goroutine stacks. Stack spans
// are not considered part of the heap. A span can change
// between heap and stack memory; it is never used for both
// simultaneously.
// HeapAlloc is bytes of allocated heap objects.
//
// “Allocated” heap objects include all reachable objects, as
// well as unreachable objects that the garbage collector has
// not yet freed. Specifically, HeapAlloc increases as heap
// objects are allocated and decreases as the heap is swept
// and unreachable objects are freed. Sweeping occurs
// incrementally between GC cycles, so these two processes
// occur simultaneously, and as a result HeapAlloc tends to
// change smoothly (in contrast with the sawtooth that is
// typical of stop-the-world garbage collectors).
HeapAlloc uint64
// HeapSys is bytes of heap memory obtained from the OS.
//
// HeapSys measures the amount of virtual address space
// reserved for the heap. This includes virtual address space
// that has been reserved but not yet used, which consumes no
// physical memory, but tends to be small, as well as virtual
// address space for which the physical memory has been
// returned to the OS after it became unused (see HeapReleased
// for a measure of the latter).
//
// HeapSys estimates the largest size the heap has had.
HeapSys uint64
// HeapIdle is bytes in idle (unused) spans.
//
// Idle spans have no objects in them. These spans could be
// (and may already have been) returned to the OS, or they can
// be reused for heap allocations, or they can be reused as
// stack memory.
//
// HeapIdle minus HeapReleased estimates the amount of memory
// that could be returned to the OS, but is being retained by
// the runtime so it can grow the heap without requesting more
// memory from the OS. If this difference is significantly
// larger than the heap size, it indicates there was a recent
// transient spike in live heap size.
HeapIdle uint64
// HeapInuse is bytes in in-use spans.
//
// In-use spans have at least one object in them. These spans
// can only be used for other objects of roughly the same
// size.
//
// HeapInuse minus HeapAlloc esimates the amount of memory
// that has been dedicated to particular size classes, but is
// not currently being used. This is an upper bound on
// fragmentation, but in general this memory can be reused
// efficiently.
HeapInuse uint64
// HeapReleased is bytes of physical memory returned to the OS.
//
// This counts heap memory from idle spans that was returned
// to the OS and has not yet been reacquired for the heap.
HeapReleased uint64
// HeapObjects is the number of allocated heap objects.
//
// Like HeapAlloc, this increases as objects are allocated and
// decreases as the heap is swept and unreachable objects are
// freed.
HeapObjects uint64
// Stack memory statistics.
//
// Stacks are not considered part of the heap, but the runtime
// can reuse a span of heap memory for stack memory, and
// vice-versa.
// StackInuse is bytes in stack spans.
//
// In-use stack spans have at least one stack in them. These
// spans can only be used for other stacks of the same size.
//
// There is no StackIdle because unused stack spans are
// returned to the heap (and hence counted toward HeapIdle).
StackInuse uint64
// StackSys is bytes of stack memory obtained from the OS.
//
// StackSys is StackInuse, plus any memory obtained directly
// from the OS for OS thread stacks (which should be minimal).
StackSys uint64
// Off-heap memory statistics.
//
// The following statistics measure runtime-internal
// structures that are not allocated from heap memory (usually
// because they are part of implementing the heap). Unlike
// heap or stack memory, any memory allocated to these
// structures is dedicated to these structures.
//
// These are primarily useful for debugging runtime memory
// overheads.
// MSpanInuse is bytes of allocated mspan structures.
MSpanInuse uint64
// MSpanSys is bytes of memory obtained from the OS for mspan
// structures.
MSpanSys uint64
// MCacheInuse is bytes of allocated mcache structures.
MCacheInuse uint64
// MCacheSys is bytes of memory obtained from the OS for
// mcache structures.
MCacheSys uint64
// BuckHashSys is bytes of memory in profiling bucket hash tables.
BuckHashSys uint64
// GCSys is bytes of memory in garbage collection metadata.
GCSys uint64
// OtherSys is bytes of memory in miscellaneous off-heap
// runtime allocations.
OtherSys uint64
// Garbage collector statistics.
// NextGC is the target heap size of the next GC cycle.
//
// The garbage collector’s goal is to keep HeapAlloc ≤ NextGC.
// At the end of each GC cycle, the target for the next cycle
// is computed based on the amount of reachable data and the
// value of GOGC.
NextGC uint64
// LastGC is the time the last garbage collection finished, as
// nanoseconds since 1970 (the UNIX epoch).
LastGC uint64
// PauseTotalNs is the cumulative nanoseconds in GC
// stop-the-world pauses since the program started.
//
// During a stop-the-world pause, all goroutines are paused
// and only the garbage collector can run.
PauseTotalNs uint64
// PauseNs is a circular buffer of recent GC stop-the-world
// pause times in nanoseconds.
//
// The most recent pause is at PauseNs[(NumGC+255)%256]. In
// general, PauseNs[N%256] records the time paused in the most
// recent N%256th GC cycle. There may be multiple pauses per
// GC cycle; this is the sum of all pauses during a cycle.
PauseNs [256]uint64
// PauseEnd is a circular buffer of recent GC pause end times,
// as nanoseconds since 1970 (the UNIX epoch).
//
// This buffer is filled the same way as PauseNs. There may be
// multiple pauses per GC cycle; this records the end of the
// last pause in a cycle.
PauseEnd [256]uint64
// NumGC is the number of completed GC cycles.
NumGC uint32
// NumForcedGC is the number of GC cycles that were forced by
// the application calling the GC function.
NumForcedGC uint32
// GCCPUFraction is the fraction of this program’s available
// CPU time used by the GC since the program started.
//
// GCCPUFraction is expressed as a number between 0 and 1,
// where 0 means GC has consumed none of this program’s CPU. A
// program’s available CPU time is defined as the integral of
// GOMAXPROCS since the program started. That is, if
// GOMAXPROCS is 2 and a program has been running for 10
// seconds, its “available CPU” is 20 seconds. GCCPUFraction
// does not include CPU time used for write barrier activity.
//
// This is the same as the fraction of CPU reported by
// GODEBUG=gctrace=1.
GCCPUFraction float64
// EnableGC indicates that GC is enabled. It is always true,
// even if GOGC=off.
EnableGC bool
// DebugGC is currently unused.
DebugGC bool
// BySize reports per-size class allocation statistics.
//
// BySize[N] gives statistics for allocations of size S where
// BySize[N-1].Size < S ≤ BySize[N].Size.
//
// This does not report allocations larger than BySize[60].Size.
BySize [61]struct {
// Size is the maximum byte size of an object in this
// size class.
Size uint32
// Mallocs is the cumulative count of heap objects
// allocated in this size class. The cumulative bytes
// of allocation is Size*Mallocs. The number of live
// objects in this size class is Mallocs - Frees.
Mallocs uint64
// Frees is the cumulative count of heap objects freed
// in this size class.
Frees uint64 } }
然后我在网上找到了对应的汉化版,哈哈,以下内容转发自http://lib.csdn.net/article/go/68270?knId=1441:
1、Alloc uint64 //golang语言框架堆空间分配的字节数
2、TotalAlloc uint64 //从服务开始运行至今分配器为分配的堆空间总 和,只有增加,释放的时候不减少
3、Sys uint64 //服务现在系统使用的内存
4、Lookups uint64 //被runtime监视的指针数
5、Mallocs uint64 //服务malloc的次数
6、Frees uint64 //服务回收的heap objects的字节数
7、HeapAlloc uint64 //服务分配的堆内存字节数
8、HeapSys uint64 //系统分配的作为运行栈的内存
9、HeapIdle uint64 //申请但是未分配的堆内存或者回收了的堆内存(空闲)字节数
10、HeapInuse uint64 //正在使用的堆内存字节数
10、HeapReleased uint64 //返回给OS的堆内存,类似C/C++中的free。
11、HeapObjects uint64 //堆内存块申请的量
12、StackInuse uint64 //正在使用的栈字节数
13、StackSys uint64 //系统分配的作为运行栈的内存
14、MSpanInuse uint64 //用于测试用的结构体使用的字节数
15、MSpanSys uint64 //系统为测试用的结构体分配的字节数
16、MCacheInuse uint64 //mcache结构体申请的字节数(不会被视为垃圾回收)
17、MCacheSys uint64 //操作系统申请的堆空间用于mcache的字节数
18、BuckHashSys uint64 //用于剖析桶散列表的堆空间
19、GCSys uint64 //垃圾回收标记元信息使用的内存
20、OtherSys uint64 //golang系统架构占用的额外空间
21、NextGC uint64 //垃圾回收器检视的内存大小
22、LastGC uint64 // 垃圾回收器最后一次执行时间。
23、PauseTotalNs uint64 // 垃圾回收或者其他信息收集导致服务暂停的次数。
24、PauseNs [256]uint64 //一个循环队列,记录最近垃圾回收系统中断的时间
25、PauseEnd [256]uint64 //一个循环队列,记录最近垃圾回收系统中断的时间开始点。
26、NumForcedGC uint32 //服务调用runtime.GC()强制使用垃圾回收的次数。
27、GCCPUFraction float64 //垃圾回收占用服务CPU工作的时间总和。如果有100个goroutine,垃圾回收的时间为1S,那么就占用了100S。
28、BySize //内存分配器使用情况
包expvar为公共变量提供了一个标准化的接口。如服务器中的操作计数器。
它以 JSON 格式通过 /debug/vars 接口以 HTTP 的方式公开这些公共变量。
设置或修改这些公共变量的操作是原子的。
除了程序使用的公共变量,还注册了
cmdline:这个变量就是启动命令
memstats: 这个变量里面存放着内存的使用情况,
expvar 的使用可参考: https://orangetux.nl/post/expvar_in_action/
以下具体介绍memstats,存放在runtime.mstatss.go文件的 mstats struct
memstats:(单位为字节)红色为重点
Alloc 堆空间分配的字节数
TotalAlloc 从服务开始运行至今分配器为分配的堆空间总和
Sys 进程从系统获得的内存空间,虚拟地址空间
Lookups 被runtime监视的指针数
Mallocs 服务 malloc的次数
Frees 服务 回收的heap objects
HeapAlloc 进程 堆内存分配使用的空间,通常是用户new出来的堆对象,包含未被gc掉的
HeapSys 进程从系统获得的堆内存,因为golang底层使用TCmalloc机制,会缓存一部分堆内存,虚拟地址空间。
HeapIdle 回收了的堆内存
HeapInuse 正在使用的堆内存
HeapReleased 返回给OS的堆内存
HeapObjects 堆内存块申请的量
StackInuse 正在使用的栈
StackSys 系统分配的作为运行栈的内存
MSpanInuse uint64 用于测试用的结构体使用的字节数, 不受GC控制
MSpanSys uint64 系统为测试用的结构体分配的字节数
MCacheInuse mcache 结构体申请的字节数(不会被视为垃圾回收)
MCacheSys 操作系统申请的堆空间用于mcache的字节数
BuckHashSys 用于剖析桶散列表的堆空间
GCSys 垃圾回收标记元信息使用的内存
OtherSys golang系统架构占用的额外空间
NextGC 垃圾回收器检视的内存大小
LastGC 垃圾回收器最后一次执行时间
PauseTotalNs 圾回收或者其他信息收集导致服务暂停的次数
PauseNs 记录每次gc暂停的时间(纳秒),最多记录256个最新记录。
PauseEnd [256]uint64 一个循环队列,记录最近垃圾回收系统中断的时间开始点
NumGC 记录gc发生的次数。
NumForcedGC uint32 服务调用runtime.GC()强制使用垃圾回收的次数
GCCPUFraction float64 垃圾回收占用服务CPU工作的时间总和。如果有100个goroutine,垃圾回收的时间为1S,那么久占用了100S
EnableGC bool 是否启用GC
DebugGC bool 是否启动DebugGC
BySize [61]struct{} 内存分配器使用情况
工具集成
有一些工具可以很方便地集成 expvar, 提供监控和可视化能力, 例如:
expvarmon(https://github.com/divan/expvarmon), 基于控制台的轻量级监控工具
netdata(https://github.com/firehol/netdata/wiki/Monitoring-Go-Applications), 功能全面的服务器实时监控工具, 提供 golang expvar 支持模块
https://cloud.tencent.com/developer/section/1141671
expvar包是 Golang 官方提供的公共变量包,它可以辅助调试全局变量。支持一些常见的类型:float64、int64、Map、String。如果我们的程序要用到上面提的四种类型(其中,Map 类型要求 Key 是字符串)。可以考虑使用这个包。
功能
它支持对变量的基本操作,修改、查询这些;
整形类型,可以用来做计数器;
操作都是线程安全的。这点很不错。相信大家都自己整过全局变量,除了变量还得整的锁,自己写确实挺麻烦的;
此外还提供了调试接口,/debug/vars。它能够展示所有通过这个包创建的变量;
所有的变量都是Var类型,可以自己通过实现这个接口扩展其它的类型;
type Var interface {
// String returns a valid JSON value for the variable.
// Types with String methods that do not return valid JSON
// (such as time.Time) must not be used as a Var.
String() string
}
Handler()方法可以得到调试接口的http.Handler,和自己的路由对接。
这些基础的功能就不多说了,大家可以直接看官方的文档。
调试接口
看源码的时候发现一个非常有意思的调试接口,/debug/vars会把所有注册的变量打印到接口里面。这个接口很有情怀。
func init() {
http.HandleFunc(“/debug/vars”, expvarHandler)
Publish(“cmdline”, Func(cmdline))
Publish(“memstats”, Func(memstats))
}
源码
var (
mutex sync.RWMutex
vars = make(map[string]Var)
varKeys []string // sorted
)
varKeys是全局变量所有的变量名,而且是有序的;
vars根据变量名保存了对应的数据。当然mutex就是这个 Map 的锁;
这三个变量组合起来其实是一个有序线程安全哈希表的实现。
type Var interface {
// String returns a valid JSON value for the variable.
// Types with String methods that do not return valid JSON
// (such as time.Time) must not be used as a Var.
String() string
}
type Int struct {
i int64
}
func (v *Int) Value() int64 {
return atomic.LoadInt64(&v.i)
}
func (v *Int) String() string {
return strconv.FormatInt(atomic.LoadInt64(&v.i), 10)
}
func (v *Int) Add(delta int64) {
atomic.AddInt64(&v.i, delta)
}
func (v *Int) Set(value int64) {
atomic.StoreInt64(&v.i, value)
}
这个包里面的所有类型都实现了这个接口;
以 Int 类型举例。实现非常的简单,注意Add和Set方法是线程安全的。别的类型实现也一样
func Publish(name string, v Var) {
mutex.Lock()
defer mutex.Unlock()
if _, existing := vars[name]; existing {
log.Panicln(“Reuse of exported var name:”, name)
}
vars[name] = v
varKeys = append(varKeys, name)
sort.Strings(varKeys)
}
func NewInt(name string) *Int {
v := new(Int)
Publish(name, v)
return v
}
将变量注册到一开始介绍的vars和varKeys里面;
注册时候也是线程安全的,所有的变量名在注册的最后排了个序;
创建对象的时候会自动注册。
func Do(f func(KeyValue)) {
mutex.RLock()
defer mutex.RUnlock()
for _, k := range varKeys {
f(KeyValue{k, vars[k]})
}
}
func expvarHandler(w http.ResponseWriter, r *http.Request) {
w.Header().Set(“Content-Type”, “application/json; charset=utf-8”)
fmt.Fprintf(w, “{\n”)
first := true
Do(func(kv KeyValue) {
if !first {
fmt.Fprintf(w, “,\n”)
}
first = false
fmt.Fprintf(w, “%q: %s”, kv.Key, kv.Value)
})
fmt.Fprintf(w, “\n}\n”)
}
func Handler() http.Handler {
return http.HandlerFunc(expvarHandler)
}
Do方法,利用一个闭包,按照varKeys的顺序遍历所有全局变量;
expvarHandler方法是http.Handler类型,将所有变量通过接口输出,里面通过Do方法,把所有变量遍历了一遍。挺巧妙;
通过http.HandleFunc方法把expvarHandler这个外部不可访问的方法对外,这个方法用于对接自己的路由;
输出数据的类型,fmt.Fprintf(w, “%q: %s”, kv.Key, kv.Value),可以发现,值输出的字符串,所以输出的内容是String()的结果。这里有一个技巧,虽然调用的字符串的方法,但是由于输出格式%s外面并没有引号,所有对于 JSON 来说,输出的内容是对象类型。相当于在 JSON 编码的时候做了一次类型转换。
type Func func() interface{}
func (f Func) Value() interface{} {
return f()
}
func (f Func) String() string {
v, _ := json.Marshal(f())
return string(v)
}
func cmdline() interface{} {
return os.Args
}
这是一个非常有意思的写法,它可以把任何类型转换成Var类型;
Func定义的是函数,它的类型是func() interface{}
Func(cmdline),使用的地方需要看清楚,参数是cmdline而不是cmdline(),所以这个写法是类型转换。转换完之后cmdline方法就有了String()方法,在String()方法里又调用了f(),通过 JSON 编码输出。这个小技巧在前面提到的http.HandleFunc里面也有用到,Golang 的程序员对这个是真爱,咱们编码的时候也要多用用啊。
不足
感觉这个包还是针对简单变量,比如整形、字符串这种比较好用。
前面已经说了,Map 类型只支持 Key 是字符串的变量。其它类型还得自己扩展,扩展的话锁的问题还是得自己搞。而且 JSON 编码低版本不支持 Key 是整形类型的编码,也是个问题;
Var接口太简单,只有一个String()方法,基本上只能输出变量所有内容,别的东西都没办法控制,如果你的变量有10000个键值对,那么这个接口基本上属于不能用。多说一句,这是 Golang 设计的常见问题,比如日志包,输出的类型是io.Writer,而这个接口只支持一个方法Write([]byte),想扩展日志包的功能很难,这也失去了抽象出来一个接口的意义。
路由里面还默认追加了启动参数和MemStats内存相关参数。我个人觉得后面这个不应该加,调用runtime.ReadMemStats(stats)会引起 Stop The World,总感觉不值当。
总结
看到就写了,并没有什么沉淀,写得挺乱的。这个包很简单,但是里面还是有些可以借鉴的编码和设计。新版本的 Golang 已经能解析整形为 Key 的哈希表了,这个包啥时候能跟上支持一下?