差别:
1.非常直观的一点,对于同一个数据集,两者检索出来的结果集数量不一样;
2.对于match的结果,我们可以可以看到,结果的Document中description这个field可以包含“He is”,“He”或者“is”;
3.match_phrased的结果中的description字段,必须包含“He is”这一个词组;
4.所有的检索结果都有一个_score字段,看起来是当前这个document在当前搜索条件下的评分,而检索结果也是按照这个得分从高到低进行排序。
我们要想弄清楚match和match_phrase的区别,要先回到他们的用途:match是全文搜索,也就是说这里的搜索条件是针对这个字段的全文,只要发现和搜索条件相关的Document,都会出现在最终的结果集中,事实上,ES会根据结果相关性评分来对结果集进行排序,这个相关性评分也就是我们看到的_score字段;总体上看,description中出现了“He is”的Document的相关性评分高于只出现“He”或“is”的Document。(至于怎么给每一个Document评分,我们会在以后介绍)。
相关性(relevance)的概念在Elasticsearch中非常重要,而这个概念在传统关系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配。
那么,如果我们不想将我们的查询条件拆分,应该怎么办呢?这时候我们就可以使用match_phrase:
match_phrase是短语搜索,亦即它会将给定的短语(phrase)当成一个完整的查询条件。当使用match_phrase进行搜索的时候,你的结果集中,所有的Document都必须包含你指定的查询词组,在这里是“He is”。这看起来有点像关系型数据库的like查询操作
TF/IDF的几个相关概念:
1.字段长度准则:这个准则很简单,字段内容的长度越长,相关性越低。我们在上面的两个例子中都能看到,同样包含了“He is”这个关键字,但是”He is passionate.”的相关性评分高于”He is a big data engineer.”,这就是因为字段长度准则影响了它们的相关性评分;
2.检索词频率准则:检索关键字出现频率越高,相关性也越高。这个例子中没有比较明显的体现出来,你可以自己试验一下;
3.反向Document频率准则:每个检索关键字在Index中出现的频率越高,相关性越低。
https://blog.csdn.net/liuxiao723846/article/details/78365078