正排索引vs倒排索引

正排索引:
正排索引是指文档ID为key,表中记录每个关键词出现的次数,查找时扫描表中的每个文档中字的信息,直到找到所有包含查询关键字的文档。
正排是以 docid 作为索引的,但是在搜索的时候我们基本上都是用关键词来搜索。所以,试想一下,我们搜一个关键字(Tom),当100个网页的10个网页含有Tom这个关键字。但是由于是正排是doc id 作为索引的,所以我们不得不把100个网页都扫描一遍,然后找出其中含有Tom的10个网页。然后再进行rank,sort等。效率就比较低了。尤其当现在网络上的网页数已经远远超过亿这个数量后,这种方式现在并不适合作为搜索的依赖。
不过与之相比的是,正排这种模式容易维护。由于是采用doc 作为key来存储的,所以新增网页的时候,只要在末尾新增一个key,然后把词、词出现的频率和位置信息分析完成后就可以使用了。
所有正排的优点是:易维护;缺点是搜索的耗时太长;
倒排索引:
由于正排的耗时太长缺点,倒排就正好相反,是以word作为关键索引。表中关键字所对应的记录表项记录了出现这个字或词的所有文档,一个表项就是一个字表段,它记录该文档的ID和字符在该文档中出现的位置情况。
倒排包含两部分:
1、由不同的索引词(index term)组成的索引表,称为“词典”(lexicon)。其中包含了各种词汇,以及这些词汇的统计信息(如出现频率nDocs),这些统计信息可以直接用于各种排名算法。
2、由每个索引词出现过的文档集合,以及命中位置等信息构成。也称为“记录表”。就是正排索引产生的那张表。当然这部分可以没有。具体看自己的业务需求了。
倒排的优缺点和正排的优缺点整好相反。倒排在构建索引的时候较为耗时且维护成本较高,但是搜索耗时短。

我们借助单词——文档矩阵模型,
通过这个模型我们可以很方便知道某篇文档包含哪些关键词,某个关键词被哪些文档所包含。
单词-文档矩阵的具体数据结构可以是倒排索引、签名文件、后缀树等。
倒排索引源于实际应用中需要根据属性的值来查找记录,lucene是基于倒排索引实现的。
这种索引表中的每一项都包括一个属性值和具有该属性值的各记录的地址。
由于不是由记录来确定属性值,而是由属性值来确定记录的位置,因而称为倒排索引(inverted index)。
带有倒排索引的文件我们称为倒排索引文件,简称倒排文件(inverted file)。
倒排索引一般表示为一个关键词,然后是它的频度(出现的次数),位置(出现在哪一篇文章或网页中,及有关的日期,作者等信息),它相当于为互联网上几千亿页网页做了一个索引,好比一本书的目录、标签一般。读者想看哪一个主题相关的章节,直接根据目录即可找到相关的页面。不必再从书的第一页到最后一页,一页一页的查找。
倒排索引由两个部分组成:单词词典和倒排文件。



倒排文件
所有单词的倒排列表顺序的存储在磁盘的某个文件里,这个文件即被称为倒排文件,倒排文件是存储倒排索引的物理文件。



单词词典
单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。
单词词典是倒排索引中非常重要的组成部分,它是用来维护文档集合中所有单词的相关信息,同时用来记载某个单词对应的倒排列表在倒排文件中的位置信息。在支持搜索时,根据用户的查询词,去单词词典里查询,就能够获得相应的倒排列表。
对于一个规模很大的文档集合来说,可能包含了几十万甚至上百万的不同单词,
快速定位某个单词直接决定搜索的响应速度,所以我们需要很高效的数据结构对单词词典进行构建和查找。
常用的数据结构包含哈希加链表和树形词典结构。



Lucene倒排索引原理
Lucerne使用的是倒排文件索引结构。该结构及相应的生成算法如下:
<1>取得关键词
<2>建立倒排索引
有了关键词后,我们就可以建立倒排索引了。上面的对应关系是:“文章号”对“文章中所有关键词”。倒排索引把这个关系倒过来,变成: “关键词”对“拥有该关键词的所有文章号”。
通常仅知道关键词在哪些文章中出现还不够,我们还需要知道关键词在文章中出现次数和出现的位置,通常有两种位置:



a.字符位置,即记录该词是文章中第几个字符(优点是关键词亮显时定位快);



b.关键词位置,即记录该词是文章中第几个关键词(优点是节约索引空间、词组(phase)查询快),lucene中记录的就是这种位置。
关键字是按字符顺序排列的(lucene没有使用B树结构),因此lucene可以用二分搜索算法快速定位关键词。



<3>实现



实现时,lucene将上面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)、位置文件 (positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息
Lucene中使用了field的概念,用于表达信息所在位置(如标题中,文章中,url中),在建索引中,该field信息也记录在词典文件中,每个关键词都有一个field信息(因为每个关键字一定属于一个或多个field)。



<4>压缩算法



为了减小索引文件的大小,Lucene对索引还使用了压缩技术。



首先,对词典文件中的关键词进行了压缩,关键词压缩为<前缀长度,后缀>,例如:当前词为“阿拉伯语”,上一个词为“阿拉伯”,那么“阿拉伯语”压缩为<3,语>。



其次大量用到的是对数字的压缩,数字只保存与上一个值的差值(这样可以减小数字的长度,进而减少保存该数字需要的字节数)。例如当前文章号是16389(不压缩要用3个字节保存),上一文章号是16382,压缩后保存7(只用一个字节)。



<5>应用原因



下面我们可以通过对该索引的查询来解释一下为什么要建立索引。   



假设要查询单词 “live”,lucene先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果。词典通常非常小,因而,整个过程的时间是毫秒级的。   



而用普通的顺序匹配算法,不建索引,而是对所有文章的内容进行字符串匹配,这个过程将会相当缓慢,当文章数目很大时,时间往往是无法忍受的


Category elasticsearch